NEW POROUS ORGANO--HETEROSTRUCTURES BASED ON ORGANO-MODIFIED GRAPHENE-OXIDE

Evmorfia K. Diamanti^{1,3}, Apostolos Enotiadis²*, Konstantinos Spyrou³, Efi Mitsari¹, Eleni Thomou¹, Lamprini G Boutsika², Myrsini-Kyriaki Antoniou², Andreas Sapalidis², Dimitrios Gournis¹*

¹Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece
² National Center for Scientific Research "Demokritos", Ag. Paraskevi Attikis, Greece
³ Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
 (*ae276@cornell.edu, *dgourni@cc.uoi.gr)

ABSTRACT

Graphene Oxide (GO), has been identified as an excellent host matrix for the accommodation of a plethora of molecular structures for the fabrication of hybrid materials for energy^[1] environmental^[2] and sorption^[3] applications. In this work, highly porous heterostructures with tailored properties were produced, through the silylation of organically modified GO. They can be effectively and efficiently obtained with only one silylation step, *i.e.* through a much faster method than previous reported in the literature^[4]. In particular, three different organo-silica precursors with various structural characteristics (rendering alkyl or phenyl groups) were employed to create high-yield silica networks as pillars between the organo-modified GO layers. Phenyl group bridged samples showed the maximum amount of silica content in the final heterostructure. Subsequent pyrolysis created porous structures, with surface areas of up to 550 m²/g, which are very attractive for potential CO₂ adsorption applications. Indeed, emission of CO₂ from energy intensive plants remains nowadays a major threat for global warming. To this end, the porous heterostructure that showed the maximum surface area was chosen for investigating its CO₂ adsorption properties. It was found to have a high CO₂ adsorption capacity of 2.8 mmol/g at 5 bar and 0 °C, which is promising for further consideration as CO₂ storage material that combines the properties of graphene with the very high porosity of silica.

REFERENCES

- [1] Enotiadis A, Angjeli K, Baldino N, Nicotera I, Gournis D. (2012). Small, 8: 3338-49.
- [2] Duan K, Li L, Hu Y, Wang X. (2017). Sci Rep, 7: 1-8.
- [3] Pedrielli A, Taioli S, Garberoglio G, Pugno NM. (2018). Microporous Mesoporous Mater., 257: 222-31.
- [4] Matsuo Y, Komiya T, Sugie Y. (2012). J Phys Chem Solids, 73: 1424–7