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ABSTRACT 
For the simulation of the flow of platelets in the bloodstream of microvessels, the blood mixture is 

considered as a continuous fluid that flows with a time-invariant flow rate within a vessel of rigid 

walls. Due to their large size, red blood cells (RBCs) accumulate toward the centerline of the vessel, 

leaving around them a layer "free of erythrocytes" (CFL – Cell Free Layer). Hence, hemodynamics in 

microcirculation can be simulated as a two-phase flow consisting of concentrated red blood cells 

towards the center of a tube, and plasma flowing in the absence of erythrocytes peripherally. 

Regarding platelets, their flow is affected by the movement of the RBCs because they are relatively 

much smaller in size, and therefore a large proportion of them migrate toward the vessel walls. In 

order to estimate the radial platelet distribution, the Convection-Diffusion equation is solved using 

a model proposed by Eckstein and Belgacem[1] which accounts for the shear-induced diffusion 

mechanism caused by cell interactions within the blood flow. Blood viscosity is defined using the 

Casson model[2] which is a generalized non-Newtonian viscosity model of flowing blood that 

depends on the Hematocrit – defined as the local volume fraction of red blood cells in the blood – 

and the local shear rate. Additionally, we take into consideration the platelets’ effect on the viscosity 

by applying Einstein’s model[3] for low concentration spherical particles in a fluid. This simulation is 

implemented for various hematocrit levels, platelet counts, vessel radii and wall shear rates. Its 

solution gives precise results for the radial distribution of platelets, which are in accordance with 

the experimental data, indicating the conditions in which their margination is facilitated or not.  

 
INTRODUCTION 
Platelets are vital components of blood, responsible for hemostasis and wound healing, the complex 

processes that prevent blood loss. Under physiological conditions, these processes are responsible 

for keeping blood in a fluidic state and constantly repair the walls of veins and arteries by forming 

solid plugs which consist of aggregated platelets on the injured wall. However, in pathological blood 

flow, such a plug might have continuous growth, turning into a clot, which can lead to total occlusion 

of a vessel. This is a very serious medical symptom called Thrombosis that can lead to conditions 

such as heart attack or stroke.  

Several investigations have been conducted in order to understand platelet rheology and analyze 

the pathological conditions under which a clot may be formed. Research has shown that platelets 

flow in close proximity to the vessel walls[5].This lateral platelet movement is caused by continuous 

rebounding collisions between erythrocytes[6]. As a result, platelet concentration is several times 

higher near the vessel wall compared to that at the center of the vessel. This discrepancy increases 

proportionally to the hematocrit and shear rate values[7].Modeling the platelet margination is the 

first step in order to study the pathological conditions that can lead to Thrombosis. 

In several investigations, researchers have developed mathematical models for the simulation of 

platelet flow. These allow the study of the rheological behavior of platelets in various flow 
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conditions and the extraction of platelet concentration profiles. Some of the most important models 

are: The phenomenological Drift-Diffusion model which has been developed by Eckstein et al. and 

describes the margination of platelets derived from experiments[1], the Fokker-Plank approach 

proposed for modeling the platelet margination by Fogelson et al.[8] and the mechanistic model 

proposed by Rivera et al. derived from the kinetic theory for multicomponent suspensions at low 

Reynolds number[4]. 

In this study, we develop a computational model for blood flow under steady-state conditions, 
which accounts for the platelet margination. The model considers the Convection-Diffusion 
equation for platelets, together with the momentum balance with the adoption of a shear-thinning 
viscosity model. Consequently, it can be applied for estimation of the platelet concentration, 
hematocrit, velocity and viscosity profiles in various flow conditions. 
 
BLOOD COMPOSITION 
Blood is a dense suspension of red blood cells, platelets and white blood cells in a protein-rich 

solvent called plasma. The most abundant cell type in the blood is red blood cells (about 99% in 

number), while the rest are platelets, which are smaller in size and lesser in number, and white 

blood cells. In the table below the main characteristics of blood components are listed. 

 
Table 1. Volume fraction, cells number per volume and main diameter range for the 3 blood cell types.  
 

Blood component 
Volume 
 fraction 
(% v/v) 

Cells number per liter of blood Main Diameter (μm) 

Red blood cells (RBCs) 30-45% Male:4.3-5.9 × 1012/L 
Female: 3.5-5.5 × 1012/L 
 

6-8 

Platelets(PLTs) 0.06-0.09% 150-400 × 109/L 2-3 
White blood cells(WBCs) 0.01% 4.5-11.0 × 109/L 10-12 (Neutrophils 63%) 
Plasma ~55%   

 
BLOOD RHEOLOGICAL PROPERTIES 
Blood plasma has similar rheological properties to water as it is a protein suspension in 91-92 w/w% 

water. Physiological values of plasma viscosity range between 1.10-1.35 mPa∙s [9]. However, the 

rest of the blood’s components (RBCs, Platelets, and WBCs), have more complex rheological 

behavior. 

While RBCs flow, they migrate toward the centerline of the vessel leaving a cell-depleted layer 

between the wall and the migrated cells. The formation of this cell depleted layer or Cell-Free Layer 

(CFL) is the outcome of several physical phenomena that take place within the flow. Specifically, in 

the vessels, flowing plasma forms a Poiseuille-like velocity profile with a gradually increasing 

potential along the radial distance, and since the largest probability for a particle to be found is 

where the potential field is smallest, RBCs tend to move toward the centerline of the flow. At the 

same time, this accumulation towards the center is limited by frequent particle-particle interactions, 

which lead to a net migration toward the walls, preventing red cells from being packed in the center. 

On the other hand, platelets flow in close proximity to vessel walls since they are affected by RBC 

movement. Specifically, for platelets, the central region is quite limited due to the cumulation of 

erythrocytes, but the depleted layer allows more freedom of movement for them, leading to a 

higher probability for a platelet to be found close to the vessel walls. 

https://www.thesaurus.com/browse/susceptive
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METHODOLOGY 
A way to simulate platelet motion and distribution is the continuous approximation (CM), where 

blood cells and platelets are assumed to have negligible volume and be part of a dilution with 

spatially varying concentration levels in the vessel. The continuous models (CM) for concentrated 

suspensions of platelets are derived from the solution of the Convection-Diffusion equations. The 

continuous models have the advantage of being easily implementable and compatible with a vast 

set of available analytical and numerical solution techniques. Continuous models work properly 

when they are used for suspension motion characterization in microscale where the particles are 

significantly smaller in comparison with the length scale of the flow. 

 
PLATELET CONVECTION-DIFFUSION EQUATION 
In most cases, the diffusivity of particles transported in a flow can be described using a Brownian 

dynamics approximation. However, this approach does not account for the mechanism of platelet 

margination. This phenomenon can be qualitatively described by the shear-induced diffusion 

mechanism. A way to approach this mechanism analytically is that of Eckstein and Belgacem[1]
 and 

Fogelson et al.[8] who introduced a drift term in the potential field 𝐽𝑟  of the Convection-Diffusion 

Equation: 

 
𝜕𝐶𝑝𝑙

𝜕𝑡
+  𝛻(𝑣𝐶𝑝𝑙)  = 𝐽𝑟                         (1) 

where 𝐶𝑝𝑙 is the local concentration of platelets, and 𝒗 is the local velocity vector. To define 𝐽𝑟 , 

Eckstein and Belgacem[1] suggested a functional form for the drift that has the property of leading 

to platelet concentration profiles similar to experimentally determined ones, and assumed that the 

field potential is invariant over the length of the channel, but varies radially. 

Hence,  𝐽𝑟  can be written as: 

 

 𝐽𝑟 =
𝜕𝛷

𝜕𝑟
𝐶𝑝𝑙 +  Diff𝛻𝐶𝑝𝑙                                                                                                                          (2) 

where, 
𝜕𝛷

𝜕𝑟
  or 𝛷′(r) is the local drift in the r-direction, Diff is the diffusion coefficient, and 𝐶𝑝𝑙  is the 

local concentration of platelets. 𝛷′(r) can be calculated using a fitted function of experimental data 

of platelet concentration profiles, and the following analytical expression [8]: 

 

𝛷′(r)  = −Diff

𝜕𝐶𝑒𝑞(𝑟)

𝜕𝑟

𝐶𝑒𝑞(𝑟)
            (3) 

Apparently, the application of the above equations in steady state provides the same concentration 

profile with the experimental data curve. In this study, the main concern is to extract a general form 

of this drift function that accounts for various flow conditions. This can be achieved by seeking 

analytical relationships that reflect the available experimental data. Eckstein and Belgacem[1], 

suggested a beta-functional form that provides a visually pleasing approximation to the observed 

concentration profiles that would mimic the shape of individual experiments. This function has the 

following form: 

 

𝐶𝑒𝑞(r) =  𝐶0 [1 +  K 𝑟𝑚(1 −  r)n)]                                                                                                           (4) 
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Thus, the Drift function takes the form of: 

 

𝛷′(r)  = −Diff
 K (m−1)𝑟𝑚−1(1 − r)n+K (n−1)𝑟𝑚(1 − r)n−1

[1 + K 𝑟𝑚(1 − r)n)] 
                                                                                                        (5) 

where r is the relative lateral position, K is a parameter that set the relative amplitude of the shape, 

𝐶0  is the normalizing platelet concentration at the centerline, and 𝑚 and n are exponents. The 

number of these undefined variables can be reduced, because the platelet mass in the width of the 

channel is conserved which in other words means that the integral of the eq.4 is equal to 1. In that 

way, the variable C0 can be written as a function of m, n and K. The relationship for C0 is: 

 

𝐶0 =
1

1+𝐾∙
𝛤(𝑚+1)∙𝛤(𝑛+1)

𝛤(𝑚+𝑛+2)

   , where  𝛤(𝑧) = ∫ 𝑥𝑧−1𝑒𝑥𝑑𝑥 
1

0
                                                                              (6) 

In the “results and discussion” section, relations extracted from experiments for K, 𝑚 and 𝑛 are 

presented.  

 
MOMENTUM EQUATION  

To calculate the velocity field, we apply the Sriram et al.[10] model. Microcirculation is represented 

by a two-layered fluid model, consisting of a core region of erythrocytes, and a peripheral layer of 

plasma, which is assumed to be a Newtonian fluid. The model also determines the location of the 

Cell-Free Layer (CFL) from an empirical law, and the core-hematocrit. The viscosity in the central 

region is given by the Casson model[2], and the plasma viscosity is assumed to follow the Newtonian 

law. The momentum balance equation that governs the flow is the Cauchy equations for steady 

axisymmetric laminar flow, which in steady state takes the form: 
1

r
 

𝑑

𝑑r
 (r 𝜂𝑏  

𝑑U𝑧,𝑏

𝑑r
) =  −

𝑑𝑃 

𝑑𝑧
      , 𝑟 = [0, 𝜆]                                   (7) 

1

r
 

𝑑

𝑑r
 (𝑟 η𝑝  

𝑑U𝑧,𝑝

𝑑r
) =  −

𝑑𝑃 

𝑑𝑧
      , 𝑟 = [𝜆, 𝑅]                       (8) 

Where  
𝑑𝑃 

𝑑𝑧
   is the pressure drop, λ is the point of the interface of blood and plasma, 𝜂b(η𝑝, 𝐻𝑐, 𝛾̇ ) is 

the blood viscosity given by Casson model[2],  𝑈z,b(r) is the velocity of RBCs in the core region, 𝜂p is 

the plasma viscosity, and 𝑈z,p(r) is the plasma velocity in CFL. 

 
BLOOD FLOW MODEL 
Regarding the estimation of the platelet’s impact on the CFL viscosity, we apply an equation 

proposed by Einstein[3] who was the first to calculate the effective viscosity 𝜇𝑠 of a dilute suspension 

of equal sized, rigid, non-interacting, neutrally buoyant, spherical particles in a fluid of viscosity 𝜇0. 

A dilute suspension is a suspension where the inter-particle distance is much larger than the particle 

size. Under this condition the effective viscosity 𝜇𝑠 of the suspension relates to that of the 

suspending fluid μ0 by: 

𝜇𝑠 = 𝜇0(1 +  
5

2
𝜑)                                                                                                                                            (9) 

where in the present study 𝜇0 is the viscosity of the blood plasma and 𝜑 is the local volume fraction 

of platelets.  
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RESULTS AND DISCUSSION 
A representative case on the 
determination of the platelet distribution 
using experimental data is shown Fig.1. 
These experiments were conducted by 
Waters et al.[11],and were carried out in 
conditions where all quantities were kept 
constant except the hematocrit, which 
varied from 15% to 44%. The other 
quantities were the platelet bulk 
concentration (Cbulk), which was equal to 
78∙109cells/L, and the wall shear-rate 
constant at 400 s-1. A second step in our 
method is to determine the parameters 
involved in Eq.4. Second order 
polynomials were used for determining 
the dependence of m, n, ln(K) on systemic 
hematocrit. Thus, the value of the beta-
function constants can be determined for 
hematocrits ranging between 15-44% 
(Fig. 2).  
 

  
 

Figure 2. Τhe second-order polynomial fitted curves for the beta-function parameters m, n and ln(K). 

Finally, the drift term can be determined for any hematocrit value by using eq.5. Having determined 

the drift term, the model can now be applied by solving the momentum equation and the 

Convection-Diffusion Equations for both platelets and RBCs in steady state or time-dependent flow 

conditions. Fig.3 shows the local hematocrit profile, the platelet relative concentration profile, the 

blood velocity profile and the blood viscosity profile versus the normalized distance.  

Figure 1. The beta-function fitting to the experimental results[11] 

with varying haematocrit values. 
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 Figure 3. Results derived from the simulation for 3 different hematocrits 24%, 36%, and 42%; (a) the platelet 
relative concentration profile(C(r)/Cbulk), (b) the local hematocrit profile, (c) the blood velocity profile, and (d) 
the blood viscosity profile all represented in normalized tube diameter. 

CONCLUSION 
In conclusion, it is important to mention that from these experiments [11], an increase of the 
hematocrit value results in a more intense accumulation of platelets. For instance, when the 
hematocrit is 45%, the platelet concentration near the vessel wall can reach a value up to 9 times 
higher than the bulk platelet concentration. Inspecting the viscosity and velocity profiles, it is easy 
to conclude that the higher the hematocrit, the larger the viscosity is. This leads to lower blood 
velocities. Furthermore, although we have adopted the Einstein model [3] to determine the impact 
of platelet volume fraction on the CFL viscosity, its effect is negligible. This is happening due to the 
low concentration of the platelets. It should be mentioned that this research can contribute to 
personalized diagnosis and treatment of the circulatory system diseases, a subject that is a future 
goal in the field of Biomedical Engineering. 
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