ΜΕΛΕΤΗ ΤΗΣ ΑΝΤΙΔΡΑΣΗΣ ΑΝΑΜΟΡΦΩΣΗΣ ΤΟΥ ΠΡΟΠΑΝΙΟΥ ΜΕ ΑΤΜΟ ΣΕ ΚΑΤΑΛΥΤΕΣ ΕΥΓΕΝΩΝ ΜΕΤΑΛΛΩΝ

<u>Θ. Ραμαντάνη</u>¹, Β. Ευαγγελίου¹, Γ. Κορμέντζας¹, Δ. Ι. Κονταρίδης^{1,*} ¹Τμήμα Χημικών Μηχανικών, Πανεπιστήμιο Πατρών, Πάτρα, Ελλάδα (*dimi@chemeng.upatras.gr)

ΠΕΡΙΛΗΨΗ

Η αντίδραση αναμόρφωσης του προπανίου με ατμό μελετήθηκε σε μία σειρά υποστηριγμένων καταλυτών ευγενών μετάλλων. Εξετάστηκε η επίδραση της φύσης της μεταλλικής φάσης (Ru, Rh, Pt, Re, Ir) και του φορέα (Al₂O₃, TiO₂, CeO₂-ZrO₂) στην αποτελεσματικότητα των καταλυτών. Η σύνθεση των καταλυτών έγινε με τη μέθοδο του υγρού εμποτισμού, ενώ η φόρτιση σε μέταλλο ήταν σε όλες τις περιπτώσεις ίση με 1 wt%. Οι καταλυτικές δοκιμές πραγματοποιήθηκαν στη θερμοκρασιακή περιοχή 450-750°C, ατμοσφαιρική πίεση και λόγο H₂O:C₃H₈ στην τροφοδοσία ίσο με 9,8. Τα αποτελέσματα έδειξαν ότι οι καταλύτες Ru/Al₂O₃ και Rh/Al₂O₃ παρουσιάζουν υψηλές μετατροπές C₃H₈ και υψηλές αποδόσεις προς H₂. Η αντικατάσταση του οξειδίου Al₂O₃ με TiO₂ οδηγεί τόσο σε υψηλότερη μετατροπή του C₃H₈ όσο και σε υψηλότερη απόδοση προς H₂.

ΕΙΣΑΓΩΓΗ

Η ραγδαία ανάπτυξη της τεχνολογίας των κυψελών καυσίμου έχει αυξήσει σημαντικά το ενδιαφέρον για το υδρογόνο (H₂). Το H₂ μπορεί να παραχθεί μέσω αναμόρφωσης με ατμό διαφόρων ενώσεων, όπως του φυσικού αερίου, της αιθανόλης, του υγροποιημένου αερίου πετρελαίου (LPG) και διαφόρων παραγώγων του πετρελαίου ^[1]. Μεταξύ αυτών, το LPG παρουσιάζει ιδιαίτερο ενδιαφέρον κυρίως σε περιοχές, όπου δεν υπάρχει διαθέσιμο δίκτυο φυσικού αερίου. Το LPG αποτελεί μίγμα υδρογονανθράκων, κυρίως προπανίου (C₃H₈) και βουτανίου (C₄H₁₀) σε περιεκτικότητες που εξαρτώνται από την πηγή προέλευσής του ^[2].

Η αναμόρφωση του προπανίου με ατμό είναι μία ισχυρά ενδόθερμη αντίδραση, με αποτέλεσμα μέγιστες αποδόσεις προς H₂ να είναι εφικτές σε υψηλές θερμοκρασίες. Τα κύρια προϊόντα της αντίδρασης είναι το H₂, το μονοξείδιο του άνθρακα (CO) και το διοξείδιο του άνθρακα (CO₂), ωστόσο παράγονται αιθάνιο (C₂H₆), αιθυλένιο (C₂H₄) και μεθάνιο (CH₄) λόγω αντιδράσεων διάσπασης και μεθανοποίησης του CO. Το βασικό πρόβλημα της αντίδρασης είναι η εναπόθεση άνθρακα, λόγω διάσπασης των C₂H₆, C₂H₄ και CH₄, η οποία λαμβάνει χώρα σε υψηλές θερμοκρασίες οδηγώντας σε σταδιακή απενεργοποίηση του καταλύτη.

Οι καταλύτες που χρησιμοποιούνται για την αναμόρφωση του προπανίου με ατμό βασίζονται σε μέταλλα μετάπτωσης (Ni, Co), η υψηλή ενεργότητα των οποίων σε συνδυασμό με το χαμηλό κόστος τους, τα καθιστά κατάλληλους καταλύτες για εμπορικές χρήσεις ^[3]. Ένα σημαντικό πρόβλημα στη χρήση υποστηριγμένων καταλυτών Ni είναι ο υψηλός ρυθμός απενεργοποίησης λόγω της εναπόθεσης άνθρακα και της συσσωμάτωσης των μεταλλικών σωματιδίων στην επιφάνεια ^[4]. Τα ευγενή μέταλλα όπως τα Ru, Rh, Pt έχουν αποδειχθεί δραστικά για την αντίδραση αναμόρφωσης του προπανίου και παρουσιάζουν εξαιρετική ανθεκτικότητα στην εναπόθεση άνθρακα ^[3].

Στην παρούσα εργασία μελετήθηκε η αντίδραση αναμόρφωσης του προπανίου με ατμό σε υποστηριγμένους καταλύτες ευγενών μετάλλων (Ru, Rh, Pt, Re και Ir). Μελετήθηκε η επίδραση της φύσης της μεταλλικής φάσης και του φορέα (Al₂O₃, TiO₂ και CeO₂-ZrO₂) στην αποτελεσματικότητα των καταλυτών.

ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ

Η σύνθεση των καταλυτών έγινε με τη μέθοδο του υγρού εμποτισμού, χρησιμοποιώντας Rh(NO₃)₃, (NH₃)₄Pt(OH)₂, Ru(NO)(NO₃)₃, ReCl₅ και IrCl₃ ως πρόδρομες ενώσεις και εμπορικούς φορείς Al₂O₃, TiO₂ και CeO₂-ZrO₂. Ακολούθησε ξήρανση και αναγωγή υπό ροή H₂ στους 300°C (Rh, Ru, Pt), 400°C (Ir) ή 500°C (Re) για 2h. Η φόρτιση σε μέταλλο ήταν σε όλες τις περιπτώσεις ίση με 1 wt%. Οι καταλύτες χαρακτηρίστηκαν με τεχνικές φυσικής ρόφησης-εκρόφησης σε θερμοκρασία υγρού αζώτου N₂ (BET) και εκλεκτικής χημειορόφησης, με σκοπό τον προσδιορισμό της ειδικής τους επιφάνειας και της διασποράς του μετάλλου αντίστοιχα.

Η καταλυτική συμπεριφορά των δειγμάτων μελετήθηκε στη θερμοκρασιακή περιοχή 450-750°C, ατμοσφαιρική πίεση και λόγο $H_2O:C_3H_8$ στην τροφοδοσία ίσο με 9,8. Η μάζα του καταλύτη, που χρησιμοποιήθηκε ήταν 100mg και ο συνολικός ρυθμός ροής 200 cm³/min. Η ανάλυση των αντιδρώντων και των προϊόντων έγινε με αέριο χρωματογράφο χρησιμοποιώντας ανιχνευτή TCD για τη μέτρηση των CO, CO₂, CH₄, H₂, Ar (εσωτερικό πρότυπο) και ανιχνευτή FID για τη μέτρηση των C₂H₆, C₂H₄ CH₄ και C₃H₈.

ΑΠΟΤΕΛΕΣΜΑΤΑ ΚΑΙ ΣΥΖΗΤΗΣΗ

Τα αποτελέσματα του φυσικοχημικού χαρακτηρισμού των καταλυτών συνοψίζονται στον Πίνακα 1. Η ειδική επιφάνεια των υλικών μετρήθηκε μετά την αναγωγή και μετά την έκθεσή τους σε συνθήκες αντίδρασης. Παρατηρείται ότι η ειδική επιφάνεια εξαρτάται από τη φύση του φορέα και δεν επηρεάζεται σημαντικά από τη φύση της μεταλλικής φάσης. Οι καταλύτες σε φορέα Al_2O_3 έχουν επιφάνεια περίπου ίση με 73 m²g⁻¹, οι καταλύτες σε φορέα TiO₂ ίση με 45 m²g⁻¹, ενώ οι καταλύτες σε φορέα CeO₂-ZrO₂ έχουν τη μικρότερη ειδική επιφάνεια ίση με 14 m²g⁻¹. Επιπλέον, παρατηρείται ότι στους καταλύτες σε φορέα TiO₂, η ειδική επιφάνεια μετά την έκθεσή τους σε συνθήκες αντίδρασης μειώνεται σημαντικά, λόγω της μετατροπής του ανατάση σε ρουτήλιο.

Καταλύτης	Ειδική επιφάνεια (m²g⁻¹) μετά απο αναγωγή	Ειδική επιφάνεια (m²g⁻¹) μετά από έκθεση σε συνθήκες αντίδρασης
Rh/Al ₂ O ₃	73	60
Ru/Al ₂ O ₃	69	60
Pt/Al_2O_3	74	62
Re/Al_2O_3	78	58
Rh/CeO_2ZrO_2	13	17
Ru/CeO_2ZrO_2	14	13
Rh/TiO₂	45	8
Ru/TiO₂	45	7

Πίνακας 1. Ειδική επιφάνεια των καταλυτών μετά από αναγωγή και μετά την έκθεσή τους σε συνθήκες αντίδρασης

Στο Σχήμα 1 παρουσιάζονται τα αποτελέσματα καταλυτικών δοκιμών για τους καταλύτες σε φορέα Al₂O₃, όπου φαίνεται η επίδραση της φύσης της μεταλλικής φάσης στη μετατροπή του C₃H₈ (Σχ. 1A), στην απόδοση προς H₂ και στις εκλεκτικότητες προς τα υπόλοιπα προϊόντα της αντίδρασης (Σχ. 1B, 1C) συναρτήσει της θερμοκρασίας.

Σχήμα 1. Μετατροπή του C₃H₈ (A), απόδοση προς H₂ και εκλεκτικότητα προς CH₄ (B), και εκλεκτικότητα προς CO και CO₂ (C), συναρτήσει της θερμοκρασίας για τους καταλύτες 1% M/Al₂O₃.

Για τους καταλύτες 1% M/Al₂O₃ (M= Ru, Rh, Ir, Pt) τα κυρία προϊόντα της αντίδρασης είναι H₂, CO και CO₂ ενώ ο καταλύτης Re/Al₂O₃ ευνοεί το σχηματισμό CH₄ και C₂H₄, λόγω της διάσπασης του C₃H₈. Οι καταλύτες Ru/Al₂O₃ και Rh/Al₂O₃ παρουσιάζουν τις υψηλότερες μετατροπές προπανίου (Σχ. 1A) και τις υψηλότερες αποδόσεις προς H₂ (Σχ. 1B). Ακολουθεί ο καταλύτης Ir/Al₂O₃, ενώ ο καταλύτης Re/Al₂O₃ είναι ο λιγότερο ενεργός. Από το Σχήμα 1C φαίνεται ότι οι καταλύτες Ir/Al₂O₃ και Pt/Al₂O₃ παρουσιάζουν υψηλότερη εκλεκτικότητα προς CO₂, ενώ οι καταλύτες Ru/Al₂O₃ και Rh/Al₂O₃ και Pt/Al₂O₃ συψηλότερη εκλεκτικότητα προς CO₂, ενώ οι καταλύτες Ru/Al₂O₃ και Rh/Al₂O₃ και Rh/Al₂O₃ και Rh/Al₂O₃ και Pt/Al₂O₃ συψηλότερη εκλεκτικότητα προς CO₂, ενώ οι καταλύτες Ru/Al₂O₃ και Rh/Al₂O₃ και Rh/Al₂O₃ συψηλότερη εκλεκτικότητα προς CO.

Στο Σχήμα 2 παρουσιάζονται τα αποτελέσματα καταλυτικών δοκιμών για τους καταλύτες Rh, όπου φαίνεται η επίδραση της φύσης του φορέα στη μετατροπή του C₃H₈ (Σχ. 2A), την απόδοση προς H₂ και τις εκλεκτικότητες προς τα υπόλοιπα προϊόντα της αντίδρασης (Σχ. 2B, 2C) συναρτήσει της θερμοκρασίας.

Σχήμα 2. Μετατροπή του C₃H₈ (A), απόδοση προς H₂ και εκλεκτικότητα προς CH₄ (B) και εκλεκτικότητα προς CO και CO₂ (C), συναρτήσει της θερμοκρασίας για τους καταλύτες 1% Rh/M_xO_{y.}

Παρατηρείται ότι για τους καταλύτες Rh, τα κύρια προϊόντα της αντίδρασης είναι τα H₂, CO₂, CO ενώ παράγονται και μικρές ποσότητες CH₄. Η φύση του φορέα επηρεάζει σημαντικά τόσο τη μετατροπή του C₃H₈ (Σχ. 2A) όσο και την εκλεκτικότητατα προς τα προϊόντα της αντίδρασης (Σχ. 2B, 2C), με τον καταλύτη Rh/TiO₂ να παρουσιάζει την υψηλότερη μετατροπή C₃H₈ και την υψηλότερη απόδοση προς H₂. Ακολουθεί ο καταλύτης Rh/Al₂O₃, ενώ ο καταλύτης Rh/CeO₂ZrO₂ είναι ο λιγότερο αποδοτικός (Σχ. 2A, 2B). Η εκλεκτικότητα προς CH₄ σε όλες τις περιπτώσεις είναι πολύ χαμηλή.

Τα αποτελέσματα αντίστοιχων πειραμάτων που ελήφθησαν με χρήση καταλυτών Ru παρουσιάζονται στο Σχήμα 3. Παρατηρείται ότι η φύση του φορέα στους καταλύτες Ru δεν επηρεάζει σημαντικά την καταλυτική συμπεριφορά. Οι καταλύτες Ru/Al₂O₃ και Ru/TiO₂ παρουσιάζουν ελαφρώς υψηλότερη μετατροπή C₃H₈ και απόδοση προς H₂ (Σχ. 3A, 3B). Η εκλεκτικότητα προς CH₄ είναι σε όλες τις περιπτώσεις χαμηλή, ενώ η εκλεκτικότητα προς CO₂ και CO δεν εξαρτάται, πρακτικά, από τη φύση του φορέα (Σχ. 3C).

Σχήμα 3. Μετατροπή του C₃H₈ (A), απόδοση προς H₂ και εκλεκτικότητα προς CH₄ (B), εκλεκτικότητα προς CO και CO₂ (C), συναρτήσει της θερμοκρασίας για τους καταλύτες 1% Ru/M_xO_{y.}

ΣΥΜΠΕΡΑΣΜΑΤΑ

Μελετήθηκε η αντίδραση αναμόρφωσης του C_3H_8 με ατμό σε καταλύτες ευγενών μετάλλων (M= Rh, Ru, Pt, Ir, Re) διεσπαρμένων σε εμπορικούς φορείς Al_2O_3 , TiO₂, και CeO₂-ZrO₂.

Βρέθηκε ότι η φύση της μεταλλικής φάσης επηρεάζει σημαντικά την ενεργότητα και εκλεκτικότητα των καταλυτών M/Al_2O_3 , με τη μετατροπή C_3H_8 και την απόδοση προς H_2 να μειώνονται σύμφωνα με τη σειρά Ru> Rh> Ir> Pt> Re.

Η καταλυτική συμπεριφορά των καταλυτών Rh εξαρτάται σε μεγάλο βαθμό από το είδος του φορέα, κάτι που δεν συμβαίνει για τους καταλύτες Ru. Ο καταλύτης Rh/TiO₂ παρουσιάζει υψηλότερη ενεργότητα για την αντίδραση αναμόρφωσης του C₃H₈ με ατμό και μεγαλύτερη απόδοση προς H₂ σε σχέση με τον καταλύτη Rh/Al₂O₃, ενώ ο καταλύτης Rh/CeO₂-ZrO₂, είναι ο λιγότερο ενεργός.

ΕΥΧΑΡΙΣΤΙΕΣ

Η παρούσα εργασία υλοποιήθηκε στο πλαίσιο της Δράσης ΕΡΕΥΝΩ- ΔΗΜΙΟΥΡΓΩ- ΚΑΙΝΟΤΟΜΩ και συγχρηματοδοτήθηκε από την Ευρωπαϊκή Ένωση και εθνικούς πόρους μέσω του Ε.Π. Ανταγωνιστικότητα, Επιχειρηματικότητα & Καινοτομία (ΕΠΑνΕΚ 2014-2020) (Κωδικός έργου: Τ1ΕΔΚ- 02442).

ΒΙΒΛΙΟΓΡΑΦΙΑ

- [1] Zuhair S.Al., Hassan M., Djama M., Khaleel A. (2017). *Chemical Engineering Communications*, 204:141-148.
- [2] Laosiripojana N., Sutthisripok W., Charojrochkul S., Assabumrungrat S. (2011). Fuel, 90:136-141.
- [3] Recupero V., Pino L., Vita A., Cipiti F., Cordaro M., Laganá M. (2005) Int. J. Hydrogen Energy, 30:963-971.
- [4] Malaibari Z.O., Amin A., Croiset E., Epling W. (2014). Int. J. Hydrogen Energy, 39:10061-10073.