ΑΝΑΠΤΥΞΗ ΝΕΩΝ ΕΤΕΡΟΔΟΜΩΝ g-C₃N₄/TiO₂ ΓΙΑ ΦΩΤΟΚΑΤΑΛΥΤΙΚΗ ΟΞΕΙΔΩΣΗ ΑΕΡΙΩΝ ΡΥΠΩΝ ΕΣΩΤΕΡΙΚΟΥ ΧΩΡΟΥ

<u>Η. Παπαηλίας</u>^{1,2}, Ν. Todorova¹, Τ. Γιαννακοπούλου¹, Δ. Δημοτίκαλη², Γ. Ανυφαντής³, Ι. Αραμπατζής³, Χ. Τράπαλης^{1,*}

¹Ινστιτούτο Νανοεπιστήμης και Νανοτεχνολογίας, ΕΚΕΦΕ «Δημόκριτος», Αθήνα, Ελλάδα ²Σχολή Χημικών Μηχανικών, ΕΜΠ, Αθήνα, Ελλάδα ³NanoPhos A.E., Λαύριο, Ελλάδα

(*c.trapalis@inn.demokritos.qr)

ΠΕΡΙΛΗΨΗ

Στην παρούσα εργασία, έγινε σύνθεση φωτοκαταλυτικών ετεροδομών g-C₃N₄/TiO₂ για εφαρμογή στην οξείδωση αέριων ρύπων εσωτερικών χώρων και πιο συγκεκριμένα της ακεταλδεΰδης (CH₃CHO). Στόχος ήταν η επίτευξη συγκεκριμένων χαρακτηριστικών των υλικών, όπως μεγάλη ειδική επιφάνεια και ευνοϊκές ζώνες σθένους/αγωγιμότητας, τα οποία θα διευκολύνουν την επαφή των αέριων ρύπων με την επιφάνεια του φωτοκαταλύτη και παράλληλα θα ενισχύσουν την οξειδωτική του ικανότητα. Επιπλέον, έμφαση δόθηκε στη δραστικότητα υπό ακτινοβολία ορατού φωτός, κάτι το οποίο αποτελεί πλέον αναγκαία συνθήκη για τη χρήση νέων φωτοκαταλυτών σε πρακτικές εφαρμογές. Οι νέες ετεροδομές παρασκευάστηκαν με ανάμειξη χημικά αποφλοιωμένου g-C₃N₄ και εμπορικού TiO₂ P25 σε διάφορες αναλογίες υπό ισχυρούς υπερήχους και ανάδευση, ώστε να επιτευχθεί πλήρης επαφή μεταξύ των δύο ημιαγωγών. Τα δείγματα χαρακτηρίστηκαν με περίθλαση ακτίνων Χ (XRD), φασματοσκοπία υπέρυθρου μετασχηματισμού Fourier (FT-IR), φασματοσκοπία υπεριώδους-ορατού (UV-Vis) και φωτοηλεκτρονική φασματοσκοπία ακτίνων X (XPS). Οι φωτοκαταλυτικές μετρήσεις έδειξαν ότι οι ετεροδομές g-C₃N₄/TiO₂ με αναλογία 1/9 εμφανίζουν την καλύτερη δράση κατά την οξείδωση της ακεταλδεΰδης. Αυτό οφείλεται κυρίως στην ευνοϊκή θέση της ζώνης σθένους η οποία διευκολύνει την πραγματοποίηση των αντιδράσεων οξείδωσης, αλλά και στην παρουσία του g- C_3N_4 το οποίο ενισχύει την απορρόφηση ακτινοβολίας ορατού φωτός.

ΕΙΣΑΓΩΓΗ

Η ποιότητα του αέρα σε εσωτερικούς χώρους έχει σημαντική επίδραση στην άνθρωπινη υγεία καθώς οι περισσότεροι άνθρωποι περνούν μεγάλο μέρος του χρόνου τους σε κλειστούς χώρους. Πλήθως αέριων ανόργανων και οργανικών ρύπων όπως οξείδια του αζώτου (NO και NO₂), διοξείδιο του θείου (SO₂) και πτητικές οργανικές ενώσεις (VOCs) εκπέμπονται συνεχώς στην εσωτερική ατμόσφαιρα ή μεταφέρονται από το εξωτερικό των κτιρίων, προκαλώντας συμπτώματα όπως υπνηλία, κεφαλαλγία, πονόλαιμο και πνευματική κόπωση. Κατά συνέπεια, είναι ζωτικής σημασίας να απομακρύνονται αυτοί οι ρύποι, προκειμένου να βελτιωθεί η ποιότητα διαβίωσης κατοίκων ή εργαζομένων σε εσωτερικούς χώρους. Η ακεταλδεΰδη (ή αιθανάλη) είναι ένας τοξικός, ερεθιστικός και πιθανός καρκινογόνος VOC ρύπος που απαντάται σε εσωτερικούς και εξωτερικούς χώρους. Είναι το αποτέλεσμα διεργασιών καύσης, όπως ο καπνός τσιγάρων και η καύση ξύλου. Οι κυριότερες πηγές σε εσωτερικούς χώρους είναι τα οικοδομικά υλικά όπως laminate, λινέλαιο, βερνικωμένο ξύλο, δάπεδα δρυός/πεύκου, βαφές γαλακτώματος, καθώς και έπιπλα από ξύλο, μοριοσανίδες και κόντρα πλακέ. Δημιουργείται επίσης από τη θερμική αποσύνθεση των πολυμερών στη βιομηχανία επεξεργασίας πλαστικών^[1].

ΣΤΟΧΟΙ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ

Μεταξύ των μεθόδων που έχουν εφαρμοστεί για την απομάκρυνση αέριων ρύπων, η φωτοκαταλυτική οξείδωση θεωρείται η πιο επωφελής λόγω των ήπιων συνθηκών αντίδρασης, της δυνατότητας εφαρμογής σε μεγάλη κλίμακα, της αξιοποίησης της άφθονης ηλιακής

ακτινοβολίας και του χαμηλού κόστους. Μέχρι σήμερα, πολλοί φωτοκαταλύτες, όπως η τιτανία (TiO₂), το οξείδιο του ψευδαργύρου (ZnO), το γραφιτικό νιτρίδιο του άνθρακα (g-C₃N₄) κλπ, έχουν χρησιμοποιηθεί για την αποτελεσματική οξείδωση της ακεταλδεΰδης. Παρόλα αυτά, ένας μόνο ημιαγωγός με μεγάλη απορρόφηση ορατού φωτός είναι δύσκολο να εμφανίζει ταυτόχρονα υψηλές ικανότητες αναγωγής και οξείδωσης λόγω του μικρού εύρους ενεργειακού χάσματος ^[2]. Επομένως, ένας σύνθετος φωτοκαταλύτης που αποτελείται από ημιαγωγούς με διαφορετικά ενεργειακά χάσματα και θέσεις ζωνών σθένους/αγωγιμότητας είναι η πιο υποσχόμενη λύση. Συγκεκριμένα, στην παρούσα εργασία έγινε παρασκευή ετεροδομών g-C₃N₄/TiO₂.

ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ

Σύνθεση:

Apχικά, bulk g-C₃N₄ συντέθηκε με θερμική πολυσυμπύκνωση της μελαμίνης στους 550 °C για 3 h. Έπειτα, 0,5 g bulk g-C₃N₄ αναδεύτηκαν σε 8 mL πυκνού θειικού οξέος για 3 h και στη συνέχεια απιονισμένο νερό προστέθηκε στο υπό ανάδευση μείγμα, με τη θερμοκρασία να αυξάνεται γρήγορα λόγω της εξώθερμης αντίδρασης του H₂SO₄ με το νερό. Το μείγμα ξεπλύθηκε αρκετές φορές με νερό έως ότου επιτευχθεί pH = ~7 και ακολούθησε ξήρανση στους 60 °C. Η παρασκευή των ετεροδομών πραγματοποιήθηκε με ανάμειξη του χημικά αποφλοιωμένου g-C₃N₄ και εμπορικού TiO₂ P25 σε αναλογίες 9/1, 3/1, 1/1, 1/3 και 1/9. Τα μείγματα διασπάρθηκαν σε 100 mL απιονισμένο νερό και ακολούθησε επεξεργασία με υπερήχους για 30 min ώστε να επιτευχθεί επαρκής επαφή μεταξύ των δύο φωτοκαταλυτών. Έπειτα από ξήρανση τα τελικά προϊόντα συλλέχθηκαν και θρυμματίστηκαν σε λεπτή σκόνη.

Χαρακτηρισμός:

Τα υλικά χαρακτηρίστηκαν με περίθλαση ακτίνων X (XRD), φασματοσκοπία υπέρυθρου μετασχηματισμού Fourier (FT-IR), φασματοσκοπία υπεριώδους-ορατού (UV-Vis) και φωτοηλεκτρονική φασματοσκοπία ακτίνων X (XPS).

Φωτοκαταλυτικές μετρήσεις:

Η εκτίμηση της φωτοκαταλυτικής δραστικότητας πραγματοποιήθηκε με βάση την πρότυπη μέθοδο ISO 22197-2:2011. Συνοπτικά, σταθερή ροή ακεταλδεΰδης διοχετεύεται σε αντιδραστήρα διαστάσεων 30cm x 5cm στον οποίο έχει τοποθετηθεί το δείγμα σε μορφή σκόνης, με τη σχετική υγρασία να διατηρείται στο 50% χρησιμοποιώντας μείγμα ξηρού και υγρού αέρα. Έπειτα από την έναρξη της ακτινοβόλησης οι δραστικές ρίζες του φωτοκαταλύτη αντιδρούν με τον προσροφημένο ρύπο και η μείωση της συγκέντρωσής του καταγράφεται με αέριο χρωματογράφο.

ΑΠΟΤΕΛΕΣΜΑΤΑ ΚΑΙ ΣΥΖΗΤΗΣΗ

Κρυσταλλική δομή:

Τα διαγράμματα XRD των ετεροδομών g-C₃N₄/TiO₂, παρουσιάζονται στο Σχήμα 1. Για το g-C₃N₄ παρατηρούνται οι δύο χαρακτηριστικές κορυφές στις 13,1° και 27,6°. Η πρώτη αντιστοιχεί στο (100) επίπεδο, το οποίο σχετίζεται με το δομικό μοτίβο των μονάδων τρι-s-τριαζίνης (επταζίνη) με ενδοπλεγματική απόσταση d=0,645 nm ^[3, 4]. Η δεύτερη αντιστοιχεί στο (002) επίπεδο, το οποίο αποδίδεται στη διαστρωματική διάταξη αρωματικών δακτυλίων με απόσταση d=0,323 nm ^[5, 6]. Οι κορυφές περίθλασης του TiO₂ αποδίδονται είτε στη φάση του ανατάση (JCPDS21-1272) είτε στη φάση του ρουτιλίου (JCPDS21-1276), καθώς το εμπορικό TiO₂ P25 εμφανίζει διφασική δομή.

Σχήμα 1. Διαγράμματα XRD των ετεροδομών g-C₃N₄/TiO₂.

Χημική σύσταση:

Τα αποτελέσματα της φασματοσκοπίας FT-IR παρουσιάζονται στο Σχήμα 2. Στα 3540-3020 cm⁻¹ διακρίνονται οι δονήσεις έκτασης N-H των εναπομείναντων αμινομάδων, στα 1645-1225 cm⁻¹ οι χαρακτηριστικές δονήσεις έκτασης των C-N ετεροκύκλων του g-C₃N₄, ενώ η κορυφή στα 805 cm⁻¹. αντιστοιχεί στη διαστολή-συστολή των δακτυλίων τριαζίνης ^[7, 8]. Παρ'όλα αυτά, η ένταση των κορυφών αυτών ελαττώνεται καθώς η περιεκτικότητα σε g-C₃N₄ μειώνεται. Παράλληλα, ενισχύεται η πλατιά κορυφή στα 400-700 cm⁻¹ η οποία οφείλεται στο TiO₂ και τις χαρακτηριστικές δονήσεις των δεσμών Ti-O-Ti ^[9, 10]. Η ταυτόχρονη εμφάνιση κορυφών και των δύο φωτοκαταλυτών αποδεικνύει την επιτυχή σύζευξή τους.

Σχήμα 2. Φάσματα FT-IR των ετεροδομών g-C₃N₄/TiO₂.

Τα φάσματα N1s και O1s της ανάλυσης XPS δίνονται στο Σχήμα 3. Τα φάσματα N1s αποτελούνται από τρεις κορυφές στα 398,6, 400,3 και 401,4 eV, που αποδίδονται αντίστοιχα στο sp² άζωτο των δακτυλίων τριαζίνης (C=N–C), στο sp³ τριτοταγές άζωτο των ομάδων N–(C)₃ και H–N–(C)₂, και στις εναπομένουσες αμινομάδες (C–NH_x) ^[11, 12]. Η ένταση των κορυφών αυτών ελαττώνεται καθώς μειώνεται η περιεκτικότητα σε g-C₃N₄. Τα φάσματα O1s αποτελούνται από δύο κορυφές στα 529,9 eV και 531,8 eV. Η πρώτη κορυφή αποδίδεται στις ομάδες O–(Ti)₄ υποδεικνύοντας το δεσμό μεταξύ Ti⁴⁺ και O²⁻, ενώ η δεύτερη οφείλεται στους δεσμούς Ti–O–H λόγω του προσροφημένου στην επιφάνεια οξυγόνου ^[13, 14]. Αντίστοιχα, η έντασή τους αυξάνεται καθώς αυξάνεται η περιεκτικότητα σε TiO₂.

Σχήμα 3. Φάσματα XPS των ετεροδομών g-C₃N₄/TiO₂: (α) N1s, (β) O1s.

Ενεργειακό χάσμα:

Τα αποτελέσματα των μετρήσεων UV-Vis και το προσδιορισμένο ενεργειακό χάσμα των φωτοκαταλυτών παρουσιάζονται στο Σχήμα 4. Όπως προκύπτει από τις γραφικές παραστάσεις της συνάρτησης $(FxE)^{1/2}$ προς την ενέργεια φωτονίων, το E_g των δειγμάτων αλλάζει σταδιακά από 2,94 eV για το χημικά αποφλοιωμένο g-C₃N₄ σε 3,14 eV για το TiO₂. Είναι εμφανές ότι το E_g των ετεροδομών μεταβάλλεται ανάλογα με την περιεκτικότητα σε g-C₃N₄ και TiO₂.

Σχήμα 4. Γραφική παράσταση $(FxE)^{1/2}$ προς ενέργεια φωτονίων των ετεροδομών g-C₃N₄/TiO₂.

Φωτοκαταλυτική δραστικότητα:

Τα αποτελέσματα φωτοκαταλυτικής οξείδωσης της ακεταλδεΰδης υπό ακτινοβολία ορατού φωτός παρουσιάζονται στο Σχήμα 5. Τη βέλτιστη φωτοκαταλυτική δραστικότητα εμφάνισε το δείγμα CNTi-1/9. Αυτό μπορεί να αποδοθεί στο κατάλληλο ενεργειακό χάσμα (E_g = 3,06 eV) που ενισχύει την απορρόφηση στο ορατό μέρος του φάσματος (~405 nm), αλλά και στις ευνοϊκές θέσεις ζωνών σθένους/αγωγιμότητας που επιτρέπουν την αξιοποίηση τόσο των ηλεκτρονίων όσο και των οπών που φωτοδιεγείρονται.

Σχήμα 5. Φωτοκαταλυτική δραστικότητα των ετεροδομών g-C₃N₄/TiO₂ για την οξείδωση της ακεταλδεΰδης υπό ακτινοβολία ορατού φωτός.

Η δράση των οπών είναι ιδιαίτερα σημαντική για τη διάσπαση της ακεταλδεΰδης, καθώς ο μηχανισμός οξείδωσής της εξαρτάται κυρίως από αυτές:

- Ενεργοποίηση: - Δέσμευση ηλεκτρονίων: - Παγίδα οπών: - Επίδραση δραστικών ριζών στην ακεταλδεΰδη: CNTi + hv → e⁻ + h⁺ e⁻ + O₂ → [•]O₂⁻ h⁺ + H₂O → [•]OH + H⁺ CH₃CHO + [•]OH → CH₃CO[•] + H₂O CH₃CO[•] + ¹⁄₂O₂ → CH₃CO[•] CH₃CO[•] → CH₃⁻ + CO₂ CH₃OO[•] + [•]OH → HCHO + H₂O + ¹⁄₂O₂

ΣΥΜΠΕΡΑΣΜΑΤΑ

Στην εργασία αυτή παρασκευάστηκαν ετεροδομές g-C₃N₄/TiO₂ με χημικά αποφλοιωμένο g-C₃N₄. Τη βέλτιστη φωτοκαταλυτική δραστικότητα για την οξείδωση της ακεταλδεΰδης έδειξε το δείγμα CNTi-1/9, κάτι που μπορεί να αποδοθεί στο κατάλληλο ενεργειακό χάσμα που ενισχύει την απορρόφηση ορατού φωτός και στις ευνοϊκές θέσεις ζωνών σθένους/αγωγιμότητας.

ΕΥΧΑΡΙΣΤΙΕΣ

Η παρούσα εργασία υλοποιήθηκε στα πλαίσια του ερευνητικού έργου «2D Φωτοκαταλυτικές Ετεροδομές για Οξείδωση Αέριων Ρύπων - 2D ΦΩΤΟΔΟΜΗ», και συγχρηματοδοτήθηκε από την Ευρωπαϊκή Ένωση και εθνικούς πόρους μέσω του Ε.Π. Ανταγωνιστικότητα, Επιχειρηματικότητα & Καινοτομία (ΕΠΑνΕΚ 2014-2020), Δράση ΕΡΕΥΝΩ-ΔΗΜΙΟΥΡΓΩ-ΚΑΙΝΟΤΟΜΩ (κωδικός έργου: ΤΙΕΔΚ-05545).

ΒΙΒΛΙΟΓΡΑΦΙΑ

- [1] D.A. Missia, E. Demetriou, N. Michael, E.I. Tolis, J.G. Bartzis. Atmos. Environ. 44 (2010) 4388-4395.
- [2] Z. Jin, N. Murakami, T. Tsubota, T. Ohno. Appl. Catal. B Environ. 150-151 (2014) 479-485.
- [3] Q. Guo, Y. Xie, X. Wang, S. Lv, T. Hou, X. Liu. Chem. Phys. Lett. 380 (2003) 84-87.
- [4] H. Zhao, X.L. Chen, C. Jia, T. Zhou, X. Qu, J. Jian, Y. Xu, T. Zhou. Mater. Sci. Eng. B 122 (2005) 90-93.
- [5] H.J. Yan, Y. Chen, S.M. Xu. Int. J. Hydrogen Energ. 37 (2012) 125-133.
- [6] W. Ho, Z. Zhang, M. Xu, X. Zhang, X. Wang, Y. Huang. Appl. Catal. B Environ. 179 (2015) 106-112.
- [7] F. Dong, L.W. Wu, Y.J. Sun, M. Fu, Z. Wu, S.C. Lee. J. Mater. Chem. 21 (2011) 15171-15174.
- [8] W.J. Ong, L.L. Tan, S.P. Chai, S.T. Yong, A.R. Mohamed. Nano Energy 13 (2015) 757-770.
- [9] Z. Tong, D. Yang, T. Xiao, Y. Tian, Z. Jiang. Chem. Eng. J. 260 (2015) 117-125.
- [10]N. Boonprakob, N. Wetchakun, S. Phanichphant, D. Waxler, P. Sherrell, A. Nattestad, J. Chen, B. Inceesungvorn. J. Colloid Interf. Sci. 417 (2014) 402-409.
- [11]H.J. Li, B.W. Sun, L. Sui, D.J. Qian, M. Chen. Phys. Chem. Chem. Phys. 17 (2015) 3309-3315.
- [12]C. Ye, J.X. Li, Z.J. Li, X.B. Li, X.B. Fan, L.P. Zhang, B. Chen, C.H. Tung, L.Z. Wu. ACS Catal. 5 (2015) 6973-6979.
- [13]G. Song, Z. Chu, W. Jin, H. Sun. Chinese J. Chem. Eng. 23 (2015) 1326-1334.
- [14]G.D. Shen, Y.P. Pu, Y.F. Cui, P.P. Jing. Ceram. Int. 43 (2017) S664-S670.