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ABSTRACT 
 
In this paper, we study the linear hydrodynamic stability of a film of Newtonian fluid flowing down 
an inclined, solid substrate featuring periodic rectangular trenches. Due to the geometric 
characteristics of the substrate, the film fails to completely wet the topography creating an 
enclosure of air inside the cavity. The inner interface forms two three-phase contact lines and 
supports a widely varying amount of liquid under different physical and geometrical conditions [1, 2]. 
The exact liquid configuration is determined by employing the Galerkin/finite element method to 
solve the two-dimensional Navier–Stokes equations at steady state, combined with an elliptic grid 
generation in order to take into account the free surface deformations. The generalized eigenvalue 
problem is solved using Arnoldi’s algorithm, in a Newton-like implementation to calculate faster the 
critical conditions for the onset of the instability, while we employ Floquet theory[3] to predict the 
stability of periodic disturbances of arbitrary wavelengths, which in general are larger than the 
periodicity of the substrate. Numerical simulations highlight the effect of inertia, viscous and 
capillary forces along with the substrate wettability and orientation with respect to gravity and the 
geometric characteristics of the substrate on the stability of the fluid flow. Due to the existence of 
triple contact points, multiple steady states may occur which are analyzed for their stability. 
Interestingly, it is shown that the presence of air inclusions in the trenches act as a damper 
preventing the disturbances on the outer free surface of the film. 
 
 
INTRODUCTION 
 
Steady film flow of a Newtonian liquid over an inclined plane with variable topography is of great 
importance in various engineering applications with scales ranging from micro to macro. This is a 
basic model for coating and liquid film deposition processes, which is very widely used in fabrication 
of microelectronic components, gravure printing[4] and in heat or mass transfer operations (e.g., 
two-phase heat exchangers and adsorption or distillation columns using structured packings[5], 
falling film reactors and in many other applications[6]. In many of these applications, the substrates 
have some kind of structure, and the flow is typically driven by a body force (such as gravity or 
centrifugal force) or by the motion of the substrate. In practice, the substrates encountered are 
never completely flat since they may contain well-defined features in the form of sharp steps, 
trenches, pillars, corrugations, etc. while irregularities may also arise due to the presence of arrested 
drops and particles on the substrate. Besides thickness variations of the coated layer, the presence 
of these topographic features may also lead to air entrapment inside them under certain conditions, 
which may affect significantly the flow dynamics as well as the resulting coating quality of the solid 
surface.  
Very recently, Varchanis et al. [2] developed an accurate and efficient numerical method to solve the 
steady thin film flow of a Newtonian film over a substrate with periodically features and examined 
new possible film arrangements. They found the existence of isolated multiple steady-state 
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solutions, while the competition between capillary, viscous, and inertia forces gives rise to 
hydrodynamic hysteresis loops. The goal of the present study is to investigate the linear stability 
analysis of the obtained steady-state solutions to identify which flow configuration will prevail. 
 
 
PROBLEM FORMULATION 
 

 
Figure 1 Cross section of the film flowing over a rectangle trench with air inclusion at the upstream corner. 
The geometric parameters, the orientation of the substrate, the unit vector of the wall and the contact points 
angles are indicated, while the film thickness at the entrance is 𝐻∗.  

 
We consider as a model system the steady, two-dimensional film flow of a Newtonian fluid on a 
plane inclined with respect to gravity by an angle α and featuring a trench; imposing that 𝛼 = 90𝜊. 
The fluid is incompressible with constant density 𝜌∗, interfacial surface tension 𝜎∗, and dynamic 
viscosity 𝜇∗. The film of thickness 𝐻∗is flowing over the topographic feature with a sudden expansion 
in the film flow cross-section located at distance 𝐿1

∗  from the entrance. The trench that is formed 
has depth 𝐷∗ and width 𝑊∗, while the distance from the sudden contraction to the exit is 𝐿2

∗ , see 
Fig. 1. The primitive flow input is the volumetric flow rate per unit length normal to the film cross-
section, 𝑞∗.  The liquid may form with the solid an apparent contact angle 𝜃, which is the angle 
between 𝒏𝑤, the unit normal vector to the solid wall, and the normal 𝒏 to the visible free surface 
at a putative contact line. The flow is described using a Cartesian coordinate system with its origin 
located at the entrance of the flow domain, with the 𝑥-axis and 𝑦-axis in the direction parallel and 
normal to the wall at 𝑥 = 0, respectively (see Fig. 1). 
The flow is governed by the momentum and mass conservation equations, which under the 

Arbitrary Eulerian-Lagrangian (ALE) formulation in the dimensionless form are given by: 

 
 

𝜌∗(𝜕𝒖∗/𝜕𝑡∗ + (𝒖∗ − 𝒖𝒎
∗ ) ⋅ ∇𝒖∗) + ∇𝑃∗ − 𝜇∗ ∇2𝒖∗ − 𝜌∗𝒈∗ = 𝟎 ,  ∇ ⋅ 𝒖∗ = 𝟎 (1) 

where 𝒖∗ = (𝑢𝑥
∗ , 𝑢𝑦

∗ , 𝑢𝑧
∗)

𝑇
, 𝑃∗, denote the velocity, pressure fields, respectively, and 𝒖𝑚

∗ =
𝜕𝒙∗

𝜕𝑡∗ the 

velocity of the mesh nodes in the flow domain. We also define the unit gravity vector as 𝒈∗ =

𝑔∗(sin 𝑎 ,− cos 𝑎)𝑇.  

Along with the two air-liquid interfaces, we apply a stress balance between capillary forces and 
stresses: 
 

 
𝒏 ⋅ (−𝑃∗𝑰 + 𝝉∗) = −𝛾∗∇𝑠 ⋅ 𝒏, (2) 

We also impose the kinematic condition: 
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𝒏 ⋅ (𝒖∗ − 𝜕𝒙∗/𝜕𝑡∗) = 0, (3) 

while along the walls of the substrate, we impose the usual no-slip, no-penetration boundary 
conditions.  
At the two intersections of the inner interface with the two trench walls, the following equations 

are imposed allowing the contact lines to move along the walls, 

 𝒏𝑠1 ⋅ 𝒏𝑤1 = cos 𝜃1, (4) 

 𝒏𝑠2 ⋅ 𝒏𝑤2 = cos 𝜃2, (5) 

Additionally, we impose periodic boundary conditions in the velocity and stress field between the 
inflow and the outflow of the domain, assuming the steady flow has the same periodicity as the 
substrate structure (i.e., we assume that the steady solution is 𝐿-periodic) 

   𝒖∗|𝑥=0 = 𝒖∗|𝑥=𝐿,     𝒏 ⋅ (−𝑃∗𝑰 + 𝝉∗)|
𝑥=0

= 𝒏 ⋅ (−𝑃∗𝑰 + 𝝉∗)|
𝑥=𝐿

 (6) 

where 𝐿∗ = 𝐿1
∗ + 𝑊∗ + 𝐿2

∗ . 
Finally, the film height at the entrance of the unit cell 𝐻∗ , is determined by requiring that the flow 
rate is constant. 
 

 𝑞∗ = ∫ 𝑢𝑥
∗𝑑𝑦∗

𝐻∗

0

 (7) 
 

As mentioned above, the base flow is steady, two-dimensional and is assumed to be 𝐿-periodic. We 

consider the stability of this steady flow subjected to infinitesimal 2D disturbances. To this end, we 

map the perturbed physical domain (𝑥, 𝑦) to a known reference domain (𝜂, 𝜉). The variables are 

written in the computational domain and are decomposed into a part which corresponds to the 

base state solution and an infinitesimal disturbance using the following ansatz: 

 

 [

𝒖
𝑃
𝑥
𝑦

] (𝜂, 𝜉, 𝑡) = [

𝒖𝑏

𝑃𝑏
𝑥𝑏

𝑦𝑏

] (𝜂, 𝜉) + 𝛿

[
 
 
 
𝒖′𝑑
𝑃′𝑑
𝑥′𝑑
𝑦′𝑑 ]

 
 
 

(𝜂, 𝜉)𝑒𝜆𝑡, (8)  

The first terms on the right-hand side of these equations represent the base solution, indicated by 
the subscript “𝑏”, while the second ones are the perturbation, indicated by the subscript “𝑑” while 
𝛿 ≪ 1. Introducing eq. (8) in the weak form of the governing equations, we derive a linearized set 
of equations for the flow in the bulk and the corresponding boundary conditions. According to our 
ansatz, an exponential dependence on time is assumed; here 𝜆 denotes the growth rate. If the 
calculated 𝜆 turns out to have a positive real part, the disturbance grows with time, and therefore 

the corresponding steady state is unstable. The disturbances 𝒖′𝑑, 𝑃𝑑
′ , 𝑥′𝑑, 𝑦′𝑑 are discretized 

employing finite element basis functions in the streamwise and spanwise directions.  
For flows over periodically structured surfaces, the most unstable disturbance for the specific 

system may have a wavelength that exceeds the period of the domain. Thus, the most appropriate 
and efficient way to deal with this issue is to employ the Floquet-Bloch theory, which allows us to 
model the flow over a structured surface by considering the small periodic domain of the 
topography. According to Bloch’s theorem, it is sufficient to look for solutions such that the 
disturbances between the inflow and outflow of the unity cell are related to each other with the 
following expression 

 
 [

𝒖′
𝑑

𝑃′
𝑑

𝑦′
𝑑

]|

𝑥=𝐿

= [

𝒖′
𝑑

𝑃′
𝑑

𝑦′
𝑑

]|

𝑥=0

𝑒2𝜋 𝑄 𝑖  (9)  
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𝒏 ⋅ (−𝑃𝑑

′ 𝑰 + 𝝉𝑝
′ )|

𝑥=𝐿
= 𝒏 ⋅ (−𝑃𝑑

′ 𝑰 + 𝝉𝑝
′ )|

𝑥=0
 𝑒2𝜋 𝑄 𝑖 (10) 

Using this formulation, the unknown disturbances,(𝒖𝑑
′ , 𝑃𝑑

′ , 𝑦𝑑
′ )𝑇,  will be determined by imposing 

eq. (9,10) at the edges of the periodic domain, which enforces that for finite real values of 𝑄 the 
disturbances will not be 𝐿-periodic. Disturbances with 𝑄 = 0 should be distinguished since in that 
case eq. (9) reduces to typical periodic boundary conditions, and thus this case corresponds to 
disturbances that have the same period or aliquots of the basic solution i.e. correspon,d to super-
harmonic instabilities. 
 
RESULTS AND DISCUSSION 
 

 

Figure 2 Map of the steady-state solutions in terms of the wetting distance 𝐻1
∗/√

𝜌∗𝑔∗

𝜎∗  for 𝐾𝑎 = 1, 1.5, 2, 𝜃 =

60𝑜and 𝛼 = 90𝑜 for 𝑑 = 𝐷∗/√𝜌∗𝑔∗/𝜎∗ = 6 and 𝑤 = 𝑊∗/√𝜌∗𝑔∗/𝜎∗ = 6. The symbols in the solution 

families correspond to one of the flow patterns around the figure. 

 
We begin our discussion by presenting in Fig. 2 the wetting lengths 𝐻1

∗ as a function of  Reynolds 

number, 𝑅𝑒 = 𝜌∗𝑞∗/𝜇∗, for various values of Kapitza number, 𝐾𝑎 = 𝛾∗𝜌∗1/3𝑔∗−1/3𝜇∗−4/3; in 
contrast with other dimensionless quantities that may arise in the problem, 𝐾𝑎 depends only on 
liquid properties such as surface tension, density and dynamic viscosity. At least two steady states 
coexist for every value of 𝑅𝑒 where we performed simulations, composing two solution branches: 
a branch in which the flow profiles feature deep penetration of the liquid in the trench leading to 
almost full coating with a tiny air inclusion (this will be called the “upper” branch from now on) and 
a branch in which the liquid penetrates partially the trench forming a large air inclusion (this will be 
called the “lower” branch from now on). The insets in Fig. 2 represent the film arrangements with 
streamline patterns for 𝐾𝑎 = 2. 
First, we examine the lower branch following the change of the flow profile with increasing inertia 
or flow rate starting with 𝑅𝑒 = 0.5. We note that the wetting distance 𝐻1

∗ tends to increase until a 
maximum is reached. Then we can observe two successive turning points defining a hysteresis loop 
at about 𝑅𝑒𝑐 ≈ 3.9, which resembles the hydrodynamic hysteresis that Kistler and Scriven[7] 
observed in the so-called teapot effect, and also the hydrodynamic hysteresis Pettas et al. [1] found 
when examining the flow of a liquid film over an inclined plane with a slit.  At even higher flow rates, 
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the contact line at the upstream wall tends to become pinned on the convex upstream corner, but 
the simulation ends before 𝐻1

∗ = 0. 
Second, examining the upper branch, we can see that the wetting penetration distance of contact 
lines at the upstream and bottom vary only slightly, always remaining near the upstream concave 
corner. On the other hand, the deformation amplitude of the outer interface, see insets that lie on 
the right side of Fig.2, is affected significantly by the change on the flow rate. Under creeping flow 
conditions, due to the high viscous forces, the free surface of the fluid nearly follows the shape of 
the bottom wall, while at high inertia the free surface tends to be flat since the film succeeds to 
overpass the trench. 
In Fig. 2 presents the wetting distance 𝐻1

∗ for different liquids. In practice, the Kapitza number varies 
mainly due to the liquid viscosity, since surface tension and density of common liquids vary in much 
sorter range. For high viscosity liquids (small values of 𝐾𝑎), the hysteresis loop that is lied in the 
lower branch vanishes, which can be attributed to the balance of the capillary force with the viscous 
forces at the contact line position; the more viscous the liquid is the less the wetting penetration. 
Thus, the transition from creeping flow to inertia flow is smoother and takes place earlier. 

 
Figure 3 Spectrum for a steady solution that lies in the (a) lower and (b) upper branch of the steady curves for 
𝑅𝑒 = 2, 𝐾𝑎 = 1.5, 𝜃 = 60𝑜 and 𝛼 = 90𝑜. 

 
In Fig. 3 (a,b) we present the eigenspectrum for 𝑅𝑒 = 2 and 𝐾𝑎 = 1.5 at the upper and lower branch 
of the steady curves, respectively, while the Floquet parameter “𝑄” varies in the range of [0,1). In 
Fig. 3(a) the real part of all the calculated eigenvalues are negative indicating that at this value of 
𝑅𝑒 the steady state is stable under all possible values of 𝑄. In contrast with the previous results, in 
Fig. 3(b) we present the eigenspectrum of a steady state that lies in the upper steady branch, which 
is unstable since there are some eigenmodes that have a positive  real part. However, the special 
notation is given in the unstable eigenvalue that lies at 0.24 + 0𝑖, see the eigenvalue inside the 
circle in Fig. 3(b). This eigenvalue is real (the imaginary part of the eigenvalue is zero) indicating that 
the steady solution is globally unstable, since the disturbances monotonically increase with 
increasing time. Note that the real eigenvalue remains always positive for every value of 𝑅𝑒 that we 
performed simulations indicating that the upper steady branch is unstable and therefore cannot be 
observed in experiments, while the corresponding eigenvector indicates that the air inclusion will 
collapse under the strong the capillary pressure field that arises. 
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CONCLUSIONS 
 
We carried out a theoretical analysis of the linear stability of a Newtonian liquid film flowing down 
an inclined solid substrate featuring periodic rectangular trenches. The analysis for the steady state 
flow revealed the existence of multiple steady-states for every value of 𝑅𝑒 that we performed 
simulations. In the upper branch, the air inclusion is located near the upstream concave corner, 
while on the lower branch the air inclusion occupies a significant amount of trench space. Moreover, 
the competition of the inertial with viscous and capillary forces generates a hysteresis loop, which 
resembles the hydrodynamic hysteresis that Kistler and Scriven [7] observed in the so-called teapot 
effect. The linear stability, considering infinitesimal perturbations around this base state, predicts 
that the steady states that lies on the upper branch of the steady curves are unstable for all values 
of the Reynolds number, since there is a real eigenvalue with a positive value. Thus, this curve 
cannot be observed experimentally. On the lower branch, a robust stabilization of the fluid flow is 
presented since the inner interface acts as a damper which stabilizes mainly the long-wave 
disturbances. Interestingly, the critical 𝑅𝑒 was calculated to be 20 times larger compared with the 
case of full coated substrate.  
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