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ABSTRACT 
Viscoelastic film flows driven by a body force can be encountered in various engineering applications 
which range from coating applications in microelectronics to biomedical flows and biofilms. In the 
literature elastic phenomena are often overlooked since most theoretical works consider the case 
of Newtonian liquids. The effects of fluid elasticity, though, can play an important role in 
applications where a viscoelastic liquid is involved as in the case of a polymeric coating solution. In 
this study, we perform a linear stability analysis for a liquid, that follows the PTT constitutive 
equation, flowing over a substrate with sinusoidal corrugations. We develop a 2D finite element 
model and employ Floquet theory to predict the stability of periodic disturbances of arbitrary 
wavelengths over deep substrate structures. We will present detailed flow stability maps over a 
wide range of parameters and discuss about the mechanisms through which elasticity affects the 
present system. We will also discuss about the stability of the flow when it is subjected to 3D 
disturbances. 
 
INTRODUCTION 
Film flows have drawn considerable attention over the years, mainly due to their inherent 
complexity and their central importance in many industrial processes with scales ranging from micro 
to macro. Some prominent examples include spin coating, gravure printing, heat exchangers and 
adsorption or distillation columns using structured packings, mudslides, and lava flows. In many of 
these applications, the substrates have some kind of structure, and the flow is typically driven by a 
body force (such as gravity or centrifugal force) or by the motion of the substrate. A typical 
characteristic of film flows is the appearance of wavy interfacial instabilities which under conditions 
can be enhanced or mitigated by the presence of the substrate structure. Another important factor 
is the rheology of the fluids involved depending on the particular application. For example, coating 
liquids are typically polymeric solutions which exhibit viscoelastic properties, although the role of 
viscoelastic effects in the stability of the film flow is not well understood. The goal of the present 
study is to investigate the effect of viscoelasticity on the stability of films flowing over an undulated 
topography analyzing in depth the interplay of elasticity along with the flow inertia and capillarity 
on the stability of films.  
A large amount of work by several research groups has been devoted to the study of the film flow 
over structured surfaces either through experimental[1,2] or theoretical studies[3-9]. Kalliadasis and 
Homsy[10] have shown that the flow over shallow rectangular topographies is stable for a wide range 
of the relevant parameters, while these results were also supported by the theoretical work Bielarz 
and Kalliadasis[11] and experimental works[1,12]. More recently, it has been established that in the 
case of shallow films flowing along deep sinusoidal corrugations might lead to stabilization of the 
film flow and/or to unstable isles in the linear stability maps[13-16], while under conditions a short-
wave mode may also arise in flows over deep periodic corrugations[17].  
All the aforementioned studies considered only the case of Newtonian liquid films. However, in 
many applications the flowing material is often a polymeric solution or a suspension of particles 
which exhibit viscoelastic properties. Previous theoretical works have shown that the presence of 
elasticity may considerably affect the steady flow introducing interesting phenomena on the flow 
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arrangement and the film shape[18-20]. Up to now, the examination of the stability of viscoelastic 
films has been restricted to flows over flat inclined solid surfaces[21-24]. The goal of the present study 
is to examine the stability of viscoelastic films flowing over surfaces with sinusoidal corrugations of 
arbitrary depth. To this end, we will consider a viscoelastic liquid that follows the ePTT constitutive 
law which allows a realistic variation of the shear and extensional fluid viscosities with the local rate 
of strain components as encountered in typical polymeric solutions. We will solve the 2D 
momentum balance and constitutive equations for the velocities and viscoelastic stresses without 
making any restricting assumptions and will perform a linear stability analysis, employing the 
Floquet-Bloch theory and assuming that the steady solution is subjected both to 2D and 3D 
disturbances of an arbitrary wavelength.  
 
PROBLEM FORMULATION 

 
Figure 1 Cross section of the film flowing over a sinusoidal substrate inclined with respect to the horizontal by 
an angle 𝛼.𝐿∗ and 𝐴∗ are the length and the depth of the unit cell of the substrate, respectively. 𝐻∗ is the film 
height at the inlet of the periodic unit cell. 

 
We consider the free-surface flow of a viscoelastic liquid film driven by gravity along an inclined 
sinusoidally corrugated substrate normal to the main flow direction, see Fig. 1. In what follows, the 
superscript “*” will indicate a dimensional quantity. The function that describes the shape of the 
wall is given by the expression: 
 

 𝑓𝑊𝑎𝑙𝑙
∗ (𝑥∗) =

𝐴∗

2
(cos (

2𝜋𝑥∗

𝐿∗
) − 1) (1) 

where 𝐿∗ and 𝐴∗are the dimensional length and depth of the unit cell. The liquid is considered to be 
incompressible, with constant density 𝜌∗, surface tension 𝜎∗, relaxation time 𝜆𝑒

∗  and total zero-shear 
viscosity 𝜇∗ = 𝜇𝑝

∗ + 𝜇𝑠
∗, where 𝜇𝑠

∗ and 𝜇𝑝
∗  are the viscosities of the solvent and the polymer, 

respectively. The primitive flow input is the volumetric flow rate per unit length normal to the film 
cross-section, 𝑞∗. The flow is described using a Cartesian coordinate system with its origin located 
at the entrance of the flow domain, with the x-axis and y-axis in the direction parallel and normal to 
the wall at x=0, respectively (see Fig. 1). 
The flow is governed by the momentum and mass conservation equations, which under the 

Arbitrary Eulerian-Langrangian (ALE) formulation in dimensional form are given by: 

 
 

𝜌∗(𝜕𝒖∗/𝜕𝑡∗ + (𝒖∗ − 𝒖𝒎
∗ ) ⋅ ∇𝒖∗) + ∇𝑃∗ − ∇ ⋅ 𝝉∗ − 𝜌∗𝒈∗ = 𝟎 ,  ∇ ⋅ 𝒖∗ = 𝟎 (2) 

where 𝒖∗ = (𝑢𝑥
∗ , 𝑢𝑦

∗ , 𝑢𝑧
∗)

𝑇
, 𝑃∗, 𝛕∗, denote the velocity, pressure and stress fields, respectively, and 

𝒖𝑚
∗ =

𝜕𝒙∗

𝜕𝑡∗ the velocity of the mesh nodes in the flow domain. We also define the unit gravity vector 

as 𝒈∗ = 𝑔∗(sin 𝑎 ,− cos 𝑎)𝑇.  

The extra stress tensor, 𝝉∗ = 2𝜇𝑠
∗ 𝜸∗̇ + 𝝉𝑝

∗ , is split into a purely Newtonian part 2𝜇𝑠
∗ 𝛾 ∗̇, where 𝛾∗̇ =

1

2
(∇𝒖∗ + ∇𝐮∗𝑇

) is the rate of strain, and a polymeric contribution 𝝉𝑝
∗ . 

To account for the viscoelasticity of the material we use the exponential Phan-Thien Tanner model: 
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 exp (

𝜆𝑒
∗𝜀

𝜇𝑝
∗

  trace(𝝉𝑝
∗ )) 𝝉𝑝

∗ + 𝜆𝑒
∗  𝝉𝑝

∗
∇

= 2𝜇𝑝
∗𝜸∗̇, (3) 

where 𝝉𝑝
∗

∇

=
𝜕𝝉𝑝

∗

𝜕𝑡∗
+ (𝒖∗ − 𝒖𝒎

∗ ) ⋅ ∇𝝉𝑝
∗ − 𝝉𝑝

∗ ⋅ ∇𝒖∗ − (𝝉𝑝
∗ ⋅ ∇𝒖∗)

𝑇
 denotes the upper convective 

derivative. Clearly, the ePTT model reduces to the Oldroyd-B model by setting 𝜀 = 0. 

Along the air-liquid interface we apply the following interfacial stress balance: 
 

 
𝒏 ⋅ (−𝑃∗𝑰 + 𝝉∗) = −𝛾∗∇𝑠 ⋅ 𝒏, (4) 

where 𝒏 is the outward unit normal vector to the free surface and 𝛾∗ is the surface tension. We 
also impose the kinematic condition: 
 

 
𝒏 ⋅ (𝒖∗ − 𝜕𝒙∗/𝜕𝑡∗) = 0, (5) 

while along the walls of the substrate, we impose the usual no-slip, no-penetration boundary 
conditions. Additionally, we impose periodic boundary conditions in the velocity and stress field 
between the inflow and the outflow of the domain, assuming the steady flow has the same 
periodicity as the substrate structure (i.e., we assume that the steady solution is L-periodic) 

   𝒖∗|𝑥=0 = 𝒖∗|𝑥=𝐿,     𝒏 ⋅ (−𝑃∗𝑰 + 𝝉∗)|
𝑥=0

= 𝒏 ⋅ (−𝑃∗𝑰 + 𝝉∗)|
𝑥=𝐿

 (6) 

Finally, the film height at the entrance of the unit cell 𝐻∗ , is determined by requiring that the flow 
rate is constant. 
 

 𝑞∗ = ∫ 𝑢𝑥
∗𝑑𝑦∗

𝐻∗

0

 (7) 
 

As mentioned above, the base flow is steady, two-dimensional and is assumed to be L-periodic. We 

consider the stability of this steady flow subjected to infinitesimal 2D and 3D perturbations. To this 

end, we map the perturbed physical domain (𝑥, 𝑦, 𝑧) to a known reference domain (𝜂, 𝜉, 𝜁). The 

variables are written in the computational domain and are decomposed into a part which 

corresponds to the base state solution and an infinitesimal disturbance using the following ansatz: 
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(𝜂, 𝜉)𝑒𝜆𝑡+𝑖 𝑘𝜁, (8)  

The first terms on the right-hand side of these equations represent the base solution, indicated by 
the subscript “𝑏”, while the second ones are the perturbation, indicated by the subscript “𝑑” while 
𝛿 ≪ 1. Introducing eq. (8) in the weak form of the governing equations we derive a linearized set 
of equations for the flow in the bulk and the corresponding boundary conditions. According to our 
ansatz, an exponential dependence on time is assumed; here 𝜆 denotes the growth rate. If the 
calculated 𝜆 turns out to have a positive real part, the disturbance grows with time, and therefore 

the corresponding steady state is unstable. The disturbances 𝒖′𝑑, 𝑃𝑑
′ , 𝝉′𝑝,𝑑, 𝒙′𝑑 are discretized 

employing finite element basis functions in the streamwise and spanwise directions while Fourier 
modes are employed in the transverse 𝜁-direction; 𝑘 denotes the wavenumber of the perturbation 
in that direction.  

For flows over periodic structured surfaces, the most unstable disturbance for the specific 
system may have a wavelength that exceeds the period of the domain. Thus, the most appropriate 
and efficient way to deal with this issue is to employ the Floquet-Bloch theory, which allows us to 
model the flow over a structured surface by considering the small periodic domain of the 
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topography. According to Bloch’s theorem, it is sufficient to look for solutions such that the 
disturbances between the inflow and outflow of the unity cell are related to each other with the 
following expression 
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|
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𝑥=0

𝑒2𝜋 𝑄 𝑖 (9)  

Using this formulation, the unknown disturbances,(𝒖𝑑
′ , 𝑃𝑑

′ , 𝝉𝑑
′ , 𝑦𝑑

′ )𝑇,  will be determined by imposing 
eq. (9) at the edges of the periodic domain, which enforces that for finite real values of 𝑄 the 
disturbances will not be L-periodic. Disturbances with 𝑄 = 0 should be distinguished since in that 
case eq. (9) reduces to typical periodic boundary conditions, and thus this case corresponds to 
disturbances that have the same period or aliquots of the basic solution, i.e. correspond to super-
harmonic instabilities. 
 
RESULTS AND DISCUSSION 
We begin our discussion by presenting in Fig. 2 the base state profiles of a viscoelastic liquid film, 
along with the spatial variation of the xx-component of the polymeric stress tensor, for two different 

values of the Weissenberg number, 𝑊𝑖 = 𝜆𝑒
∗𝑞∗/𝐻𝑁

∗ 2 which correspond to liquids with different 
amounts of elasticity; 𝐻𝑁

∗  denotes the mean Nusselt film height, defined as 𝐻𝑁
∗ = (3𝜇∗𝑞∗/

𝜌∗𝑔∗ sin 𝛼)1/3. As shown, the interplay between inertial forces which push the fluid against the 
downstream wall and the elastic rebound from the wall are responsible for intensification of the 
film deformation and the formation of the cusp, see Fig. 2c. In Fig. 2a we also examine the relative 
amplitude of the free surface, 𝐴𝑟𝑒𝑙, which is the ratio of the amplitude of the free surface 
deformation to the amplitude of the substrate as a function of 𝑅𝑒 = 𝜇∗𝑞∗/𝜌∗.  

 

Figure 2. (a) Relative amplitude of the free surface, 𝐴𝑟𝑒𝑙, as a function of the Reynolds number for various 

values of Wi using the Oldroyd-B model (𝜀 = 0). (b,c) Spatial variation of the normal stress component 

(𝜏𝑝,𝑥𝑥) for 𝑊𝑖 = 0.5, and 𝑊𝑖 = 1.5 calculated at 𝑅𝑒 = 15.  

At intermediate values of the Reynolds number, 2 < 𝑅𝑒 < 15, the presence of the substrate 
structure and the competition between the inertia forces, gravity and surface tension gives rise to 
an amplification of the steady free surface deformation. The reflected wave along with the surface 
wave generates a standing wave which becomes amplified in this regime of the Reylonds number 
and is also observed in the case of Newtonian liquids[12]. The point of resonance arises for a 
particular value of Re for which the surface velocity of the fluid is equal to the phase velocity of the 
capillary waves. 
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Next, we examine the stability of the steady flow when subjected to 2D disturbances. To this end 
we produce the stability maps shown in Fig. 3 considering values of the Bloch wavenumber 𝑄 in the 
range of [0,0.5] which can be associated with the dimensionless frequency of the disturbances, 𝑓. 
Increasing fluid elasticity, the flow progressively deviates from the Newtonian case[16] as can be seen 
in Fig. 3a-d for 𝑊𝑖 = 0.5, 0.75, 1 and 1.5, respectively. For 𝑊𝑖 = 0.5, the stability map differs in two 
ways from that of a Newtonian liquid, i.e. two isles of stability arise instead of one for a Newtonian 
liquid and secondly for low values of elasticity the flow appears to become more stable since the 
first critical 𝑅𝑒  increases to 6.89 (for 𝑓 = 0.046 which corresponds to 𝑄 = 0.324). Further increase 
of Wi indicates that the bulk fluid elasticity has an overall stabilizing effect on the fluid flow, and the 
most unstable state is now encountered for longwave disturbances (𝑓 → 0). Therefore, we deduce 
that the elasticity is responsible for dampening high frequency interfacial perturbations.  

 

Figure 3. Effect of the Wi number in the stability diagrams using the Oldroyd-B model. (a) 𝑊𝑖 = 0.5, 

(b)𝑊𝑖 = 0.75, (c) 𝑊𝑖 = 1.0, (d) 𝑊𝑖 = 1.5 

 
CONCLUSIONS 
We carried out a theoretical analysis of the linear stability of a viscoelastic liquid film flowing down 
an inclined sinusoidal surface. The analysis for the steady state flow revealed that the competition 
of the inertial forces with the fluid elasticity generates a static hump at the free surface which may 
be preceded by a cusp. This tends to increase the relative amplitude of the free surface deformation 
with respect to substrate amplitude. The linear stability, considering infinitesimal perturbations 
around this base state, predicts a robust stabilization of the fluid flow due to the presence of fluid 
elasticity. In particular, the spatial variation of polymeric stresses of the base flow create a force 
that opposes inertia and tends to damp the disturbances for all frequencies; the damping increases 
with increasing Wi. Interestingly, for large values of Wi, the critical value of Re was calculated to be 
4 times larger compared with the case of the Newtonian liquids, while the mechanism of instability 
is found to be related with the convection of the perturbation of the polymeric stress field by the 
base state fluid flow. On the contrary, the influence of shear-thinning mechanism destabilizes the 
flow, by increasing the effective inertia particularly around the maxima of the topography.  
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