
12o Πανελλήνιο Επιστημονικό Συνέδριο Χημικής Μηχανικής  Αθήνα, 29-31 Μαΐου 2019 

YIELD-STRESS ANALYSIS OF ELASTO-VISCO-PLASTIC MATERIALS IN CROSS-SLOT GEOMETRY 

A. Kordalis1, S. Varchanis1, I. Tsamopoulos1* 
1Department of Chemical Engineering, University of Patras, Patras, Greece 

(*tsamo@chemeng.upatras.gr) 

ABSTRACT 

While much attention has been paid in the rheological response of elasto-visco-plastic materials in 
shear flows, surprisingly few studies have focused on pure extensional flows of such materials. This 
fact is probably associated with the practical difficulties related with the generation of a purely 
extensional flow field. In addition, recent experiments by Zhang et al.[1] have revealed noticeable 
differences with respect to the extensional behaviour of complex yield-stress materials (i.e. the ratio 
of the extension yield-stress to the shear yield-stress is larger, by a factor of 1.5, than expected from 
the standard theory). Such findings indicate the importance of the investigation of the yield-stress 
materials in elongational flows. We propose the standard cross-slot device to measure the 
extensional properties of complex yield-stress fluids. More specifically, we fit the 
Saramito/Herschel-Bulkley[2] model to a 0.08% Carbopol solution and carry out simulations of 
elasto-visco-plastic flows in the standard cross-slot geometry. Performing a wide-range parametric 
analysis on the dynamics of this stagnation flow, we show that due to the low elasticity of these 
materials, it is possible to obtain a steady state vorticity-free flow around the stagnation point even 
for high extension rates. The impact of the interplay of plasticity and elasticity on the nonlinear 
dynamics of the cross-slot flow are examined in detail. 
 
INTRODUCTION 
In everyday life, we come across numerous materials that flow above an applied stress, otherwise 
they behave like solids. Their response when motion is induced is determined based on the imposed 
flow conditions. This kind of materials are described as yield stress materials. For example, spreading 
mayonnaise on a slice of bread reveals the flowing nature of the material. On the other hand, the 
corrugations created on the free surface of mayonnaise after agitating the content of a jar, remain 
in place and won’t flatten under the constant stress generated by gravity. This reveals the solid 
nature of this material. The same material displays two radically different behaviours in two slightly 
different situations. In the first case the applied stress magnitude is large enough to make the 
mayonnaise flow, while in the second case the magnitude of stress is inadequate to make the system 
flow. Somewhere between, there is a value of stress in which the transition from solid to fluid 
occurs. This threshold is called yield stress. The proper spotting of the material areas where 
fluidization takes place is a matter of great importance. Thus, a robust criterion is needed for 
tracking the yield surface. The most widely accepted criterion is that proposed by Von Mises as its 
predictions are very accurate and have been evaluated experimentally[3]. 
A yield stress response is observed in a vast variety of materials like pastes, powders, suspensions, 
gels and emulsions[4]. Despite the gaping differences in the structure of those media, the 
phenomenological yield stress mechanism under which they behave is surprisingly similar[5]. The 
significance of the identification of the rheological response of such materials lies in the plethora of 
applications that they appear. Yield stress materials play a key role to many processes involving 
industrial, research and financial interest. Some examples are the processing of pulp suspensions of 
paper making[6], preparation of concrete in construction[6] and extraction of crude oil[7]. As studied 
by Dimitriou and Mckinley[7], crude oil demonstrates intricacies during extraction. Specifically, the 
pressure drop (therefore energy consumption as well as a priori dimensioning of equipment, i.e. 
pumps) required to restart a gelled pipeline is proportionate to the yield stress of the material. 
Consequently, a proper characterization of the rheological response of waxy crude oil is necessary 
in order to design accurately the drilling and extraction process. Up to this day, this characterization 
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is based only on shear rheology neglecting extensional contributions. However, Zhang et al.[1] 
illustrated experimentally that the extensional response of yield stress materials may be quite 
different than their shear response, highlighting that the standard viscoplastic theory (Bingham 
model) cannot predict such differences. 
The main objective of this study is to examine the response of yield stress materials when subjected 
to extensional deformations. The material that we choose to focus on is a well-characterized 
Carbopol solution[8]. The main reason behind the thorough research on this material is its “ideal” or 
non-thixotropic behaviour that provides a better understanding of its elastic and plastic properties. 
We choose the standard cross slot geometry in order to generate a planar, two-dimensional 
extensional flow field. The constitutive model that describes the rheology of Carbopol in this study 
is the Saramito/Herschel-Bulkley, i.e. SRM/HB[2]. According to Fraggedakis et al.[9], who performed 
recently a comparison among the predictions of various elasto-visco-plastic (EVP) constitutive 
models, the SRM/HB model can capture the rheological response of EVP materials more accurately, 
when compared to other EVP models. At the same time it maintains a rather simple form, hence its 
adoption is favoured over other existing EVP models. 
 
PROBLEM FORMULATION 
An incompressible elasto-visco-plastic material is found at rest inside the microscale planar cross 
slot geometry (Fig. 1). Symbols bearing the superscript * correspond to dimensional quantities, 
otherwise they correspond to dimensionless quantities. When subjected to motion under levels of 
stress lower than the yield stress 𝜏𝑦

∗  , the material behaves as a Neo-Hookean solid with elastic 

modulus 𝐺∗. Otherwise it flows as a viscoelastic fluid [2] with an apparent relaxation time 𝜆∗ =

(𝑘∗ 𝐺∗⁄ )1/𝑛 where 𝑘∗ is the consistency parameter and n the exponent of Herschel-Bulkley model. 
As shown in Fig. 1, the width and length of each channel of the cross slot are equal to 𝐻∗and 𝐿∗ =

10𝐻∗, respectively, following the design by Cruz et al.[10]. There are two inflows, on the top and 
bottom arm, as well as two outflows at the left and right arm. Also, to avoid stress singularities in 
the cross-slot flow, we use rounded corners, with a radius equal to 5% of the channel width. The 
effect of gravity is neglected as the gravitational field is perpendicular to the planar flow. All lengths 
are scaled with the width of the channel 𝐻∗, whilst the velocity field is scaled with the mean velocity 
at the inflow 𝑈∗. Stresses and pressure are scaled with 𝐺∗. Therefore the dimensionless numbers 
that arise are the Reynolds number, 𝑅𝑒 = 𝜌∗𝑈∗2/𝐺∗, the Weissenberg number, 𝑊𝑖 = 𝜆∗𝑈∗ 𝐻∗⁄ =

(𝑘∗ 𝐺∗⁄ )1/𝑛𝑈∗/𝐻∗, the yield strain 𝜀𝑦 = 𝜏𝑦
∗ /𝐺∗ and the Bingham number 𝐵𝑛 = 𝜀𝑦/𝑊𝑖. Note that the 

density of the material is denoted as 𝜌∗. The Bingham number is expressed as a function of the Wi 
and the yield strain (Bn = εy/Wi). Note that the Bingham number is inversely proportional to the 
Weissenberg number. Thus, when the Bingham number is large, the material behaves like an elastic 
solid. On the contrary, when the Bingham number is small the material behaves like a viscoelastic 
liquid. 
Initially, the material does not carry any stresses in its bulk. At a certain time instant, the flow rate 
is suddenly elevated from zero to a prescribed value at the inflows of the geometry and the EVP 
flow starts to evolve in the cross-slot geometry. 
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Figure 1. In scale schematic representation of the planar cross slot geometry containing a yield stress fluid 
under flow. 
 
GOVERNING EQUATIONS 
In all simulations, we assume incompressible, isothermal and creeping flow (𝑅𝑒 = 0). These features 
are expressed in a non-dimensional form by the mass balance and the momentum balance as 
follows: 
∇ ∙ 𝑢 = 0 (1) 

∇ ∙ 𝜎 = 0 (2) 

where 𝑢 is the velocity vector and 𝜎  represents the total stress tensor. 

The total stress tensor is split in an isotropic part containing the thermodynamic pressure P and a 
part that includes the extra stress tensor 𝜏 contribution. The latter is due to the elasto-visco-plastic 

nature of the material. Hence, the total stress tensor is given in terms of conformation tensor 𝐶 

where 𝜏 = 𝐶 − 𝐼  as: 

𝜎 = −𝑃𝐼 + 𝐶 − 𝐼 (3) 

The non-Newtonian elasto-visco-plastic stesses of the fluid are expressed via the Saramito 
constitutive model which has the following tensorial form: 

∇
𝐶 + 𝑓(𝐶)

𝑊𝑖
(𝐶−𝐼 ) = 0

 (4) 

Where the first term of the above equation is the Upper Convected Maxwell derivative of the 

conformation tensor and 𝑓 (𝐶) is the function that governs the transition of the material from an 

unyielded to a yielded state and vice-versa. According to the SRM/HB implementation[2] we have: 

𝑓 (𝐶) = max [0,
|𝜏𝐷|−𝜀𝑦

|𝜏𝐷|
𝑛   ]

1 𝑛⁄

 (5) 

Where the second invariant of the deviatoric stress tensor 𝜏𝐷 = 𝜏 −
𝑡𝑟(𝜏)

3
𝐼 is given as: 
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|𝜏𝐷| = √
𝜏𝐷:𝜏𝐷

2
 (6) 

The governing equations are solved numerically using the newly proposed stabilized finite element 
method by Varchanis et al.[11], that features equal order interpolation of all variables 
(velocities/pressure/stresses) and makes use of the log-conformation representation of the 
constitutive equation. The domain is discretized in triangular elements using the quasi-elliptic mesh 
generator proposed by Dimakopoulos and Tsamopoulos[12]. Finally, fully implicit transient 
simulations are performed in order to investigate and understand the nonlinear dynamics of this 
stagnation point flow.  
 

 
FLUID RHEOLOGY 
The data used to estimate the values of the material parameters of the model are obtained by the 
experimental observations of Putz et al.[8]. The model contains 4 parameters to be fitted. These are 
𝐺∗, 𝜏𝑌

∗ , 𝑘∗  and 𝑛. 𝐺∗ is extracted from LAOStress experiments, while the remaining parameters are 
estimated by fitting the predictions of the model to the experimental flow curve (steady shear stress 
vs shear rate). The values of the material parameters are presented in Table 1. 
 

Table 1. Values of the parameters of SRM/HB model obtained by fitting the SRM/HB model to the 
experimental data of Putz et al. [add reference]. 

 
𝐺∗ (Pa) 𝜏𝑌

∗ ,(Pa)  𝑘∗ (Pa sn)  𝑛 

62.5 1.62 4.84 0.33 

For the base case, the yield strain 𝜀𝑦 equal to 2.67 10-2. 

 
RESULTS AND DISCUSSION 

 
Figure 2. N1 vs Wi at the stagnation point of the cross-slot geometry. Point (a) corresponds to Wi=10-5, (b) to 
Wi=0.03 and (c) to Wi=3. 

 
Fig. 2 presents the predicted steady first normal stress difference (τxx-τyy), which is denoted as N1, 
as a function of the Wi number. At the upper axis of the figure, we present the respective Bn 
number. The distinct points (a), (b) and (c) in Fig. 2 are chosen for depicting close-ups of the CSER 
device at certain Wi numbers. At the right part of each close-up in Fig. 3 we present the streamlines 
of the flow, superimposed on the yield surfaces. In the regions of the geometry that are red, the 
material is in a yielded state, while in the regions of the geometry that are blue, the material is in 
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an unyielded state. At the left part of the close-ups we show the contours of N1. Starting from very 
low values of the flow rate, we can observe that N1 forms a plateau. This plateau resembles the 
plateau at simple shear flow experiments, defining a yield normal stress. At higher flow rates, N1 
rises just like in viscoelastic fluids. Note that we find steady states with symmetric flow fields for all 
flow rates examined in this case. Now, examining the close-ups of the CSER for low flow rates, we 
can observe that unyielded regions exist before and after the stagnation point. With increasing flow 
rate, the unyielded regions vanish and the flow enters a viscoelastic regime. The material particles 
become more and more stretched in the x-direction and the streamlines feature a bending shape 
close to the stagnation point, something that is a clear sign of viscoelasticity. Similar streamlines 
and N1 profiles have been observed in the viscoelastic fluid experiments [13]. 

 
Figure 3.Contours of N1 at the left and streamlines superimposed with yielded/unyielded areas at the right 
for cases (a) Wi=10-5, (b) Wi=0.03 and (c) Wi=3. highlighted in Figure 2. 

 
CONCLUSIONS 
 We have examined the flow of elasto-visco-plastic materials in the standard cross slot microfluidic 
device. This device can provide valuable information with respect to the normal stresses that 
develop in yield-stress materials. At low flow rates, elastoplastic effects and the normal yield stress 
can be evaluated. At high flow rates, the viscoelastic effects of yield stress materials can be 
evaluated. Finally, due to the low elasticity of yield stress materials, a symmetric steady flow field 
can be established for a wide range of imposed flow rates. 
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