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ABSTRACT 
In this work we examine the flow of elasto-visco-plastic materials in the optimized-shape cross-slot 
extensional rheometer[1] (OSCER). The shape of this geometry has been optimized numerically in 
order to generate a wide region of homogeneous elongational flow. Haward et al.[1] demonstrated 
experimentally using PEO solutions, that such an ideal flow can remain steady for a wide range of 
extension rates in the OSCER. Based on their results for viscoelastic materials in the OSCER, we study 
the dynamics of elasto-visco-plastic materials in this purely extensional flow field. Such an 
investigation of yield-stress materials in elongational flows is necessary as indicated by recent 
experiments of Zhang et al.[2]. In their work, noticeable differences have been revealed with respect 
to the extensional behavior of complex yield-stress materials (e.g. the ratio of the extension yield-
stress to the shear yield-stress is larger, by a factor of 1.5, than expected from the standard theory). 
In order to investigate the dynamics of elasto-visco-plastic materials in strong extension, we have 
simulated the flow of a 0.08% Carbopol® -940 aqueous solution using the Saramito/Herschel-Bulkley 
constitutive equation [3] in the OSCER geometry. Performing a wide-range parametric analysis of the 
dynamics of the flow, we determine when steady-state or oscillatory solutions arise. Surprisingly, 
we find that even at high extension rates the system can reach to a steady state at which strong 
extension dominates a wide region around the stagnation point. However, when the flow rate is 
furtherly increased, we identify a critical value of the flow rate that drives the system to a periodic 
state.  
 
INTRODUCTION 
The majority of people use many materials in their everyday life that are characterized as 
viscoplastic, such as toothpaste, butter, cosmetic creams etc. Not only in people’s everyday life, but 
also in industry (e.g. concrete), environment (e.g. lava flow) and our bodies (e.g. mucus), viscoplastic 
materials are present[4]. Although these materials are very common, they had not received attention 
for years. The common feature of the examples mentioned is their ability to flow when high stresses 
are applied; on the contrary their behavior is solid-like at low stresses. The most convenient way to 
describe the transition is by introducing the term of yield stress, τy, which causes these fluids to be 
called yield stress fluids.  

Almost a century has passed since Bingham described these materials (1922) with a simple model, 
which assumes that the material responds as a Newtonian fluid when it is found in a yielded state, 
and as a rigid solid when it is found in an unyielded state. A recent model introduced by Saramito[3], 
describes such materials as elastic solids when found in an unyielded state and as viscoelastic fluids 
when found in a yielded state. These materials are called elasto-visco-plastic (EVP). Some examples 
of this type of fluids are emulsions, liquid foams and Carbopol gel.  

The development of constitutive equations is a very challenging procedure. There is no generally 
accepted model for yield stress fluids, in contrast to polymeric fluids whose behavior can be 
predicted in any type of flow. This happens because single-phase materials and especially polymer 
solutions and polymer melts have attracted mainly the research interest in the past decades, 
resulting to the development of robust and accurate constitutive equations. Consequently, many 
efforts have been made to establish appropriate EVP constitutive equations based on principles that 
govern the response of polymeric fluids. The most common way for validating possible models is by 

mailto:dimako@chemeng.upatras.gr


12o Πανελλήνιο Επιστημονικό Συνέδριο Χημικής Μηχανικής  Αθήνα, 29-31 Μαΐου 2019 

comparison of the predictions of the model to experimental measurements of the stresses. While 
shear stresses are easy to measure with the use of rotational rheometers, the measurement of 
normal stresses is extremely difficult[5] due to various factors such as: heterogeneity of the flow, 
residual stresses and instrument sensitivity. In addition, producing a shear-free flow field is a great 
challenge.  

Cross-slot rheometers consist of perpendicular, bisecting channels with inlets and outlets that cause 
a stagnation point at the center of symmetry. They are often used because of their ability to 
generate a stagnation point, at which the fluid velocity is zero, in contrast to the velocity gradient. 
This means that at this particular point planar elongation flow is generated. Many studies, both 
experimental[6] and computational[7], have examined the flow of viscoelastic materials in the cross-
slot geometry by examining the dynamics of the flow. It has been found[6,8] that elastic instabilities 
occur after a critical value of flow rate, which lead to flow asymmetry and unsteady flow. 
Additionally, in the standard cross-slot device the region where purely elongational flow is 
generated is quite limited, due to the sharpness of the cross-slot corners. Therefore, the extension 
rate is well-defined only at the stagnation point. Even when Cruz et al.[7] attempted to reduce the 
sharpness of the corners, and in turn the influence of shear, by rounding the corners, the dynamics 
of this flow did not change dramatically. Thus, Alves[9] introduced a new optimized shaped cross-
slot rheometer (OSCER), which has the ability to create a wider region of planar elongational flow. 
Alves[9] suggested that this numerically optimized geometry can generate a steady shear-free 
velocity field insensitive to inertial and elastic instabilities. Haward et al.[1] validated this assumption 
by performing experiments with dilute PEO solutions and illustrating that a symmetric steady flow 
field can be maintained in the OSCER even at very high extension rates. The OSCER geometry 
resembles a standard cross-slot device, in which the corners have been pulled from the opposite 
direction, being salient and forming a square in the center of the device. In the corners of the OSCER, 
fluid is trapped causing self-lubrication of the flow and creating a shear-free domain with purely 
elongational flow. While EVP fluids have never been tested in this geometry, experiments with 
viscoelastic fluids[1] indicate that this rheometer has many capabilities. Thus, in this study we 
investigate the potential of using the optimized cross-slot device as an instrument for measuring 
the normal stresses and quantifying the extensional response of complex yield-stress fluids. 

 
PROBLEM FORMULATION 
The creation of the OSCER geometry, which is used in this work, is determined using Fig. 1 from the 
work of Haward et al.[10]. The data points of the walls of the device are extracted from a digitized 
photograph of the OSCER. Then using the Software Eureqa[11,12], and taking advantage of the 
symmetry of OSCER, we found the equation that best fits the points that correspond to the one 
eighth of the geometry. The result of this equation, rotated by -45 degrees, can be seen in Fig. 1 (b) 
(red color), and the final geometry of the OSCER can be seen in Fig. 1 (a). 

The four channels of the OSCER have a width equal to W̃ = 200 μm. The distance from inflow and 
outflow boundaries to the center of the cross-slot, L̃, is equal to 20.5*W̃. This length has been found 
to be adequate in retaining a fully developed flow at the inflow and outflow boundaries during flow 
simulations. We assume two-dimensional flow, considering that the OSCER is very deep in the third 
dimension, perpendicular to the xy plane. The inlet channels, from where the fluid enters the 
rheometer, are parallel to the y-axis and the outlet channels are parallel to the x-axis (see Fig. 1). 

Note that in Fig. 1 (a), 𝐿̃ and 𝑊̃ are in scale.  We have validated our geometry, by solving the 
momentum and mass conservation for DOP, a Newtonian fluid, and comparing our results to the 
experimental ones reported by Haward et al.[10]. 

 



12o Πανελλήνιο Επιστημονικό Συνέδριο Χημικής Μηχανικής  Αθήνα, 29-31 Μαΐου 2019 

 
Figure 1. The OSCER geometry. (a) The whole rheometer, (b) Zoom in the center of the cross-slot. 

 

In order to get an estimation for the values of the material parameters of the constitutive model, 
we fit the SRM/HB model to the experimental data of Putz et al.[13]. The material of interest is a 
0.08% Carbopol solution. We estimate the elastic modulus G̃, from LAOS data, and we fit the rest of 
parameters, namely, the yield stress τ̃y, the consistency parameter K̃ and the HB exponent n to the 

flow curve. For this material, we estimate the elastic modulus 𝐺̃ = 62.5 𝑃𝑎, the consistency 

parameter 𝐾̃ =  4.838 𝑃𝑎 𝑠𝑛, the yield stress 𝜏̃̃𝑦= 1.67 𝑃𝑎 and the power index 𝑛 = 0.332. The 

scaling quantities for the non-dimensionalization of the governing equations are the width of the 

channel 𝑊̃, the characteristic mean velocity at the inflow 𝑈̃, the characteristic time of the flow 

𝑊̃ 𝑈̃⁄ ,  the characteristic time of the material (𝐾̃ 𝐺̃⁄ )
1 𝑛⁄

 and the characteristic stress 𝐺̃. We also 

define the Reynolds (Re), Weissenberg (Wi), yield strain (εy) and Bingham, (Bn) dimensionless 
numbers as follows: 

Re = 
ρ̃ ̃U2

G̃
  (1) 

Wi = 
material's characteristic time

flow's characteristic time
 = 

(̃K
G⁄ ̃)

1
nŨ

W̃
   (2) 

εy = 
̃τy

G̃
  (3) 

Bn = 
𝜀𝑦

Wi
  (4) 

where ρ̃ is the Carbopol gel’s density. 

Note that the quantities that feature a tilde are dimensional; otherwise the quantities are 
dimensionless. The 2-dimensional flow in the OSCER is governed by the laws of continuity (5) and 
momentum conservation (6): 
∇ · u = 0  (5) 

Re ( 
∂u
∂t   + u · ∇u ) + ∇ · (pI) - ∇ · τ = 0  (6) 

where u  is the velocity vector, p the thermodynamic pressure, I  the identity tensor, and τ  the extra 
stress tensor. In the equation (6), there is no gravity term, because we assume that the action of 
gravity is in the third dimension and does not affect the flow. Also, creeping flow is assumed 
(Re=0), so that Eq. (6) can be written as: 
∇ · (pI) - ∇ · τ = 0  (7) 
The constitutive model, which is used in this work is the so called Saramito/Herschel-Bulkley 
model[3], which can be written in its dimensionless form as: 
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∇
τ + max ( 0, |τD|- εy

|τD|n  )
1
n τ

Wi
 = ε̇

     (8) 

Where τD = τ - 
1

3
 tr(τ)I  denotes the deviatoric part of τ. We also denote as ε̇ = ∇u + (∇u)T the rate 

of deformation tensor and as 
∇
τ  = 

∂τ
∂t  + u · ∇τ - (∇u)T· τ - τ · (∇u)  the upper-convected time 

derivative of the stress tensor.  

We solve the mass (5) and momentum conservation (7) coupled with the constitutive Eq. (8) in the 
OSCER flow geometry. With respect to boundary conditions, we impose the no slip and no 
penetration conditions on the channel walls: 
u = 0   (9) 
Additionally, boundary conditions must be applied at the entrance and exit of the channels. At the 
inflow, we impose one-dimensional equations which are solved together with the two-dimensional 
equations for the rest of the domain. We impose the following flow rate for steady one-dimensional 
flow for the inflow boundary at y = L and y = -L, respectively. 

Q = ∫ uy|y=Ldx = -(1- e-t)
W

0
   (10.a) 

Q = ∫ uy|y= -Ldx = (1- e-t)
W

0
   (10.b) 

This flow rate causes a constant pressure gradient Δp Δy⁄ . When simulating the transient flow, at 
each time step we solve the one-dimensional equations under the respective constant pressure 
gradient.  Along the outflow boundaries we apply the open boundary condition (OBC)[14]. In this way 
we eliminate any numerical error that could arise due to the truncation of the domain. Using this 
particular boundary condition, we do not impose the fluid velocity and stresses, but we calculate 
them from the weak form of the governing equations. The governing equations are solved 
numerically using the newly proposed stabilized finite element method by Varchanis et al.[15] that 
features equal order interpolation of all variables (velocities/pressure/stresses) and makes use of 
the log-conformation representation of the constitutive equation. The domain is discretized in 
triangular elements using the quasi-elliptic mesh generator proposed by Dimakopoulos and 
Tsamopoulos[16]. Finally, fully implicit transient simulations are performed in order to investigate 
and understand the nonlinear dynamics of this stagnation point flow. 
 
RESULTS AND DISCUSSION 
Before we proceed to the discussion of the results, it is useful to define the local Wi and Bn numbers, 
which are based on the deformation rate at the stagnation point. We define as Wisp the local 
Weissenberg number at the stagnation point: 
Wisp = Wi ε̇  (11) 

Where ε̇=|∂ux/∂x| is the rate of deformation at the stagnation point. From the definition of Eq. (4) 
for the Bingham number, the local Bingham number at the stagnation point is given as: 

Bnsp=
εy

Wisp
  (12) 

Initially we will examine the EVP flow in the OSCER. Fig. 2 presents the predicted steady first normal 
stress difference (τxx-τyy), which is denoted as N1, as a function of the Wisp number at the stagnation 
point. At the upper axis of the figure, we present the respective local Bingham number Bisp. Starting 
from very low values of the flow rate, we can observe that N1 forms a plateau. This plateau 
resembles the plateau at simple shear flow experiments, and defines a yield normal stress. This 
observation gives the opportunity to determine the value of the normal yield stress through the 
OSCER device. 
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 Fig. 3 depicts close-ups of the OSCER device at certain local Wisp numbers, which are marked as red 
crosses in Fig. 2. At the left part of each close-up we present the streamlines of the flow, 
superimposed on the yield surfaces. In the regions of the geometry that are red, the material is in a 
yielded state, while in the regions of the geometry that are blue, the material is in an unyielded 
state. At the right part of the close-ups we present the contours of N1. 

 
Figure 2. First normal stress difference,N1, at the stagnation point versus Wisp and Bnsp. 

 

In Fig. 3 it is evident from the contours of N1 that a large area of homogeneous extensional flow is 
generated around the stagnation point. Examining the close-ups of the OSCER for low flow rates, 
we can observe that unyielded regions exist close to the stagnation point and at the salient corners 
of the OSCER. With increasing flow rate, the unyielded regions vanish and the flow enters a 
viscoelastic regime. The material particles become more and more stretched in the x-direction and 
the streamlines feature a bending shape close to the stagnation point, something that is a clear sign 
of viscoelasticity. Similar streamlines and N1 profiles have been observed in the viscoelastic fluid 
experiments[10]. In Fig. 3 (a) unyielded regions are detected at the salient corners of the OSCER, 
where the velocity is almost zero, and also at a place between the stagnation point and the corner, 
where the velocity is not zero. In the unyielded regions it holds that |τD| < εy, which means that the 
tension required to yield is not posed on the material and thus it remains solid.  

 

Figure 3. Yielded/unyielded regions along with streamlines on the left hand side and contours of the first 

normal stress difference, N1, on the right hand side for Wisp = 10-4 (a) and Wisp = 10 (b). 

 

For Wisp numbers greater than 34, the flow ceases to be steady and symmetric and becomes 
periodic and asymmetric. In Fig. 4 we present the first normal stress difference versus time for Wisp 
= 40. In order to observe some details in the periodic solution we additionally present Fig. 4 (b) 
which is a magnification of the temporal evolution of N1 inside the red circle of Fig. 4 (a). In Fig. 4 (b) 
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we can observe the startup of the periodic solution as well as the amplitude of the periodic 
oscillation of N1 at the stagnation point. The period of the phenomenon is determined to be equal 
to 4.68. 

 
Figure 4. (a) First normal stress difference versus time for the base case at Wisp = 40, (b) zoom in at the time 

when periodic solution arises. 

 

CONCLUSIONS 

We have examined the flow of a 0.08% Carbopol® -940 aqueous solution in the OSCER. This 
rheometer generates a wide flow field that produces pure elongational flow, in contrast to the 
standard cross-slot rheometer which generates elongational flow only at the stagnation point. We 
have solved the momentum and mass conservation equations coupled with the Saramito/Herschel-
Bulkley constitutive equation using the in-house stabilized Finite Element Solver of our lab. Our 
results indicate that at low flow rates, elastoplastic effects can be detected and the yield normal 
stress can be measured, while at high flow rates, viscoelastic effects can be evaluated. For a wide 
range of extension rates, a symmetric steady flow is established. Nevertheless, in all cases we find 
a critical value at which transient instabilities arise and the apparatus cannot give accurate results. 
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